AI for Small Businesses and Consumers: Applications and Innovations

Ashok Srivastava
{"title":"AI for Small Businesses and Consumers: Applications and Innovations","authors":"Ashok Srivastava","doi":"10.1145/3292500.3340398","DOIUrl":null,"url":null,"abstract":"Small businesses are the lifeblood of the U.S. economy, representing an astounding 99.9 percent of all businesses, creating two-thirds of net new jobs, and accounting for 44 percent of economic activity. Yet, 50 percent of small businesses go out of business in the first 5 years. What's behind this dismal statistic? Among the top contributing factors is cash flow management. Owners who cannot efficiently manage the inflow and outflow of cash are almost certain to fail. And, those who can are more likely to break through the statistical 5-year barrier to build thriving businesses. In this talk, we'll describe novel applications of artificial intelligence and large-scale machine learning aimed at addressing the problem of forecasting cash flow for small businesses. These are sparse, high-dimensional correlated time series. We'll present new results on forecasting this type of time series, using scalable Gaussian Processes with kernels formed through the use of deep learning. These methods yield highly accurate predictions but also include a principled approach for generating confidence intervals.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3340398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Small businesses are the lifeblood of the U.S. economy, representing an astounding 99.9 percent of all businesses, creating two-thirds of net new jobs, and accounting for 44 percent of economic activity. Yet, 50 percent of small businesses go out of business in the first 5 years. What's behind this dismal statistic? Among the top contributing factors is cash flow management. Owners who cannot efficiently manage the inflow and outflow of cash are almost certain to fail. And, those who can are more likely to break through the statistical 5-year barrier to build thriving businesses. In this talk, we'll describe novel applications of artificial intelligence and large-scale machine learning aimed at addressing the problem of forecasting cash flow for small businesses. These are sparse, high-dimensional correlated time series. We'll present new results on forecasting this type of time series, using scalable Gaussian Processes with kernels formed through the use of deep learning. These methods yield highly accurate predictions but also include a principled approach for generating confidence intervals.
面向小型企业和消费者的人工智能:应用与创新
小企业是美国经济的命脉,占所有企业的99.9%,创造了三分之二的净新就业机会,占经济活动的44%。然而,50%的小企业在头5年倒闭。这个令人沮丧的数据背后是什么?其中最重要的因素是现金流管理。不能有效管理现金流入和流出的所有者几乎肯定会破产。而且,那些有能力的人更有可能突破5年的统计障碍,建立蓬勃发展的企业。在这次演讲中,我们将介绍人工智能和大规模机器学习的新应用,旨在解决预测小企业现金流的问题。这些是稀疏的,高维相关的时间序列。我们将展示预测这类时间序列的新结果,使用可扩展的高斯过程和通过使用深度学习形成的核。这些方法产生了高度准确的预测,但也包括一种产生置信区间的原则方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信