On Policy Evaluation with Aggregate Time-Series Shocks

D. Arkhangelsky, V. Korovkin
{"title":"On Policy Evaluation with Aggregate Time-Series Shocks","authors":"D. Arkhangelsky, V. Korovkin","doi":"10.2139/ssrn.3619495","DOIUrl":null,"url":null,"abstract":"We propose a general strategy for estimating treatment effects, in contexts where the only source of exogenous variation is a sequence of aggregate time-series shocks. We start by arguing that commonly used estimation procedures tend to ignore the crucial time-series aspects of the data. Next, we develop a graphical tool and a novel test to illustrate the issues of the design using data from influential studies in development economics [Nunn and Qian, 2014] and macroeconomics [Nakamura and Steinsson, 2014]. Motivated by these studies, we construct a new estimator, which is based on the time-series model for the aggregate shock. We analyze the statistical properties of our estimator in the practically relevant case, where both cross-sectional and time-series dimensions are of similar size. Finally, to provide causal interpretation for our estimator, we analyze a new causal model that allows taking into account both rich unobserved heterogeneity in potential outcomes and unobserved aggregate shocks.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3619495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a general strategy for estimating treatment effects, in contexts where the only source of exogenous variation is a sequence of aggregate time-series shocks. We start by arguing that commonly used estimation procedures tend to ignore the crucial time-series aspects of the data. Next, we develop a graphical tool and a novel test to illustrate the issues of the design using data from influential studies in development economics [Nunn and Qian, 2014] and macroeconomics [Nakamura and Steinsson, 2014]. Motivated by these studies, we construct a new estimator, which is based on the time-series model for the aggregate shock. We analyze the statistical properties of our estimator in the practically relevant case, where both cross-sectional and time-series dimensions are of similar size. Finally, to provide causal interpretation for our estimator, we analyze a new causal model that allows taking into account both rich unobserved heterogeneity in potential outcomes and unobserved aggregate shocks.
考虑累计时间序列冲击的政策评估
我们提出了一种估计治疗效果的一般策略,在外源变化的唯一来源是一系列累计时间序列冲击的情况下。我们首先讨论的是,通常使用的估计程序往往会忽略数据的关键时间序列方面。接下来,我们开发了一个图形工具和一个新的测试,使用发展经济学[Nunn和Qian, 2014]和宏观经济学[Nakamura和Steinsson, 2014]中有影响力的研究数据来说明设计问题。在这些研究的激励下,我们构建了一个新的估计器,该估计器基于时间序列模型。我们在实际相关的情况下分析了我们的估计量的统计性质,其中横断面和时间序列维度都是相似的大小。最后,为了为我们的估计器提供因果解释,我们分析了一个新的因果模型,该模型允许考虑潜在结果中丰富的未观察到的异质性和未观察到的总冲击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信