Jianjun Wang, M. Zhu, R. Outlaw, Xin Zhao, D. Manos, B. Holloway, V. Mammana, M. Ray, J. Dalton
{"title":"Synthesis and field emission properties of carbon nanosheets","authors":"Jianjun Wang, M. Zhu, R. Outlaw, Xin Zhao, D. Manos, B. Holloway, V. Mammana, M. Ray, J. Dalton","doi":"10.1109/IVNC.2004.1354983","DOIUrl":null,"url":null,"abstract":"A nanometer edged two-dimensional graphite structure, carbon nanosheet, was synthesized by inductively coupled radio-frequency plasma enhanced chemical vapour deposition on a variety of substrates, including metals, semiconductors and insulators. The carbon nanosheets were characterized by scanning electron microscopy, high resolution transmission electron microscopy and Raman spectroscopy. Edges of nanosheets had a uniform thickness of about 1 nm. Typical nanosheets consisted of only a few atomic layers and had a graphitic structure. The high density of atomic scale vertical graphitic edges are potential sites for electron field emission. The carbon nanosheets had a turn-on (threshold 10/spl mu/A/cm/sup 2/) field of about 5 V//spl mu/m and a metallic behavior based on a linear Fowler-Nordheim plot. This sheet-like carbon nanostructure is expected to be a robust edge emitter.","PeriodicalId":137345,"journal":{"name":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC.2004.1354983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A nanometer edged two-dimensional graphite structure, carbon nanosheet, was synthesized by inductively coupled radio-frequency plasma enhanced chemical vapour deposition on a variety of substrates, including metals, semiconductors and insulators. The carbon nanosheets were characterized by scanning electron microscopy, high resolution transmission electron microscopy and Raman spectroscopy. Edges of nanosheets had a uniform thickness of about 1 nm. Typical nanosheets consisted of only a few atomic layers and had a graphitic structure. The high density of atomic scale vertical graphitic edges are potential sites for electron field emission. The carbon nanosheets had a turn-on (threshold 10/spl mu/A/cm/sup 2/) field of about 5 V//spl mu/m and a metallic behavior based on a linear Fowler-Nordheim plot. This sheet-like carbon nanostructure is expected to be a robust edge emitter.