Model Predictive Control for Grid-ready Microgrids in developing countries

Yifu Ding, Avinash Vijay, D. Neal, Daniel J. Rogers, M. Mcculloch
{"title":"Model Predictive Control for Grid-ready Microgrids in developing countries","authors":"Yifu Ding, Avinash Vijay, D. Neal, Daniel J. Rogers, M. Mcculloch","doi":"10.1109/PowerAfrica49420.2020.9219857","DOIUrl":null,"url":null,"abstract":"In an under-resourced environment, the optimal energy management of the off-grid system under the stochastic generation and load is an open technology challenge. To design the least-cost system whilst meeting the reliability requirement, this work develops a predictive control framework based on a real-world microgrid pilot design11This work is supported in part by the Engineering and Physical Sciences Research Council under Grant EP/R030111/1 Robust Extra Low Cost Nano-grids (RELCON). Considering users' preferences and various weather conditions, it employs model predictive control (MPC) and demonstrates superior performance in reliability improvement compared with the day-ahead case. Given the reliability requirements ranging from 70% to 90%, the MPC can achieve the 5.23% improvement with the same system cost, and close to the performance under the perfect foresight.","PeriodicalId":325937,"journal":{"name":"2020 IEEE PES/IAS PowerAfrica","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica49420.2020.9219857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In an under-resourced environment, the optimal energy management of the off-grid system under the stochastic generation and load is an open technology challenge. To design the least-cost system whilst meeting the reliability requirement, this work develops a predictive control framework based on a real-world microgrid pilot design11This work is supported in part by the Engineering and Physical Sciences Research Council under Grant EP/R030111/1 Robust Extra Low Cost Nano-grids (RELCON). Considering users' preferences and various weather conditions, it employs model predictive control (MPC) and demonstrates superior performance in reliability improvement compared with the day-ahead case. Given the reliability requirements ranging from 70% to 90%, the MPC can achieve the 5.23% improvement with the same system cost, and close to the performance under the perfect foresight.
发展中国家并网微电网的模型预测控制
在资源不足的环境下,随机发电和负荷下离网系统的最优能量管理是一个开放性的技术挑战。为了设计成本最低的系统,同时满足可靠性要求,这项工作开发了一个基于现实世界微电网试点设计的预测控制框架。这项工作得到了工程和物理科学研究委员会在EP/R030111/1授权下的部分支持。考虑用户偏好和不同天气条件,采用模型预测控制(MPC),在可靠性提高方面优于前一天情况。在70% ~ 90%的可靠性要求下,MPC可以在相同的系统成本下实现5.23%的改进,接近完全预见下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信