Searching and Matching Texture-free 3D Shapes in Images

Shuai Liao, E. Gavves, Cees G. M. Snoek
{"title":"Searching and Matching Texture-free 3D Shapes in Images","authors":"Shuai Liao, E. Gavves, Cees G. M. Snoek","doi":"10.1145/3206025.3206057","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to search and match the best rendered view of a texture-free 3D shape to an object of interest in a 2D query image. Matching rendered views of 3D shapes to RGB images is challenging because, 1) 3D shapes are not always a perfect match for the image queries, 2) there is great domain difference between rendered and RGB images, and 3) estimating the object scale versus distance is inherently ambiguous in images from uncalibrated cameras. In this work we propose a deeply learned matching function that attacks these challenges and can be used for a search engine that finds the appropriate 3D shape and matches it to objects in 2D query images. We evaluate the proposed matching function and search engine with a series of controlled experiments on the 24 most populated vehicle categories in PASCAL3D+. We test the capability of the learned matching function in transferring to unseen 3D shapes and study overall search engine sensitivity w.r.t available 3D shapes and object localization accuracy, showing promising results in retrieving 3D shapes given 2D image queries.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to search and match the best rendered view of a texture-free 3D shape to an object of interest in a 2D query image. Matching rendered views of 3D shapes to RGB images is challenging because, 1) 3D shapes are not always a perfect match for the image queries, 2) there is great domain difference between rendered and RGB images, and 3) estimating the object scale versus distance is inherently ambiguous in images from uncalibrated cameras. In this work we propose a deeply learned matching function that attacks these challenges and can be used for a search engine that finds the appropriate 3D shape and matches it to objects in 2D query images. We evaluate the proposed matching function and search engine with a series of controlled experiments on the 24 most populated vehicle categories in PASCAL3D+. We test the capability of the learned matching function in transferring to unseen 3D shapes and study overall search engine sensitivity w.r.t available 3D shapes and object localization accuracy, showing promising results in retrieving 3D shapes given 2D image queries.
搜索和匹配图像中无纹理的3D形状
本文的目标是在二维查询图像中搜索并匹配无纹理3D形状的最佳渲染视图和感兴趣的对象。将3D形状的渲染视图与RGB图像匹配是具有挑战性的,因为1)3D形状并不总是与图像查询完美匹配,2)渲染图像和RGB图像之间存在很大的域差异,以及3)在未校准的相机图像中估计物体尺度与距离本质上是模糊的。在这项工作中,我们提出了一个深度学习的匹配函数来应对这些挑战,并可用于搜索引擎,以找到适当的3D形状并将其与2D查询图像中的对象进行匹配。我们在PASCAL3D+中对24个最受欢迎的车辆类别进行了一系列的对照实验,对所提出的匹配函数和搜索引擎进行了评估。我们测试了学习到的匹配函数转移到未见过的3D形状的能力,并研究了搜索引擎对可用3D形状和物体定位精度的总体灵敏度,在给定2D图像查询的情况下检索3D形状显示了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信