G. Delaval, Soguy Mak Karé Gueye, É. Rutten, N. D. Palma
{"title":"Modular coordination of multiple autonomic managers","authors":"G. Delaval, Soguy Mak Karé Gueye, É. Rutten, N. D. Palma","doi":"10.1145/2602458.2602465","DOIUrl":null,"url":null,"abstract":"Complex computing systems are increasingly self-adaptive, with an autonomic computing approach for their administration. Real systems require the co-existence of multiple autonomic management loops, each complex to design. However their uncoordinated co-existence leads to performance degradation and possibly to inconsistency. There is a need for methodological supports facilitating the coordination of multiple autonomic managers. In this paper we propose a method focusing on the discrete control of the interactions of managers. We follow a component-based approach and explore modular discrete control, allowing to break down the combinatorial complexity inherent to the state-space exploration technique. This improves scalability of the approach and allows constructing a hierarchical control. It also allows re-using complex managers in different contexts without modifying their control specifications. We build a component-based coordination of managers, with introspection, adaptivity and reconfiguration. We validate our method on a multiple-loop multi-tier system.","PeriodicalId":399536,"journal":{"name":"International Symposium on Component-Based Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Component-Based Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2602458.2602465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Complex computing systems are increasingly self-adaptive, with an autonomic computing approach for their administration. Real systems require the co-existence of multiple autonomic management loops, each complex to design. However their uncoordinated co-existence leads to performance degradation and possibly to inconsistency. There is a need for methodological supports facilitating the coordination of multiple autonomic managers. In this paper we propose a method focusing on the discrete control of the interactions of managers. We follow a component-based approach and explore modular discrete control, allowing to break down the combinatorial complexity inherent to the state-space exploration technique. This improves scalability of the approach and allows constructing a hierarchical control. It also allows re-using complex managers in different contexts without modifying their control specifications. We build a component-based coordination of managers, with introspection, adaptivity and reconfiguration. We validate our method on a multiple-loop multi-tier system.