Minimum entropy approach for multisensor data fusion

Yifeng Zhou, H. Leung
{"title":"Minimum entropy approach for multisensor data fusion","authors":"Yifeng Zhou, H. Leung","doi":"10.1109/HOST.1997.613542","DOIUrl":null,"url":null,"abstract":"In this paper, we present a minimum entropy fusion approach for multisensor data fusion in non-Gaussian environments. We represent the fused data in the form of the weighted sum of the multisensor outputs and use the varimax norm as the information measure. The optimum weights are obtained by maximizing the varimax norm of the fused data. The minimum entropy fusion solution only depends on the empirical distribution of the sensor data and makes no specific distribution assumptions about the sensor data. Numerical simulation results are provided to show the effectiveness of the proposed fusion approach.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper, we present a minimum entropy fusion approach for multisensor data fusion in non-Gaussian environments. We represent the fused data in the form of the weighted sum of the multisensor outputs and use the varimax norm as the information measure. The optimum weights are obtained by maximizing the varimax norm of the fused data. The minimum entropy fusion solution only depends on the empirical distribution of the sensor data and makes no specific distribution assumptions about the sensor data. Numerical simulation results are provided to show the effectiveness of the proposed fusion approach.
多传感器数据融合的最小熵方法
本文提出了一种用于非高斯环境下多传感器数据融合的最小熵融合方法。我们将融合后的数据以多传感器输出的加权和的形式表示,并使用变差范数作为信息度量。通过最大化融合数据的最大变范数来获得最优权重。最小熵融合解只依赖于传感器数据的经验分布,而没有对传感器数据进行具体的分布假设。数值仿真结果表明了所提出的融合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信