Character Profiling in Low-Resource Language Documents

Tak-sum Wong, J. Lee
{"title":"Character Profiling in Low-Resource Language Documents","authors":"Tak-sum Wong, J. Lee","doi":"10.1145/3372124.3372129","DOIUrl":null,"url":null,"abstract":"This paper focuses on automatic character profiling --- connecting \"who\", \"what\" and \"when\" --- in literary documents. This task is especially challenging for low-resource languages, since off-the-shelf tools for named entity recognition, syntactic parsing and other natural language processing tasks are rarely available. We investigate the impact of human annotation on automatic profiling. Based on a Medieval Chinese corpus, experimental results show that even a relatively small amount of word segmentation, part-of-speech and dependency annotation can improve accuracy in named entity recognition and in identifying character-verb associations, but not character-toponym associations.","PeriodicalId":145556,"journal":{"name":"Proceedings of the 24th Australasian Document Computing Symposium","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372124.3372129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on automatic character profiling --- connecting "who", "what" and "when" --- in literary documents. This task is especially challenging for low-resource languages, since off-the-shelf tools for named entity recognition, syntactic parsing and other natural language processing tasks are rarely available. We investigate the impact of human annotation on automatic profiling. Based on a Medieval Chinese corpus, experimental results show that even a relatively small amount of word segmentation, part-of-speech and dependency annotation can improve accuracy in named entity recognition and in identifying character-verb associations, but not character-toponym associations.
低资源语言文档中的字符分析
本文主要关注文学文献中的自动人物特征分析——连接“谁”、“什么”和“什么时候”。这项任务对于低资源语言来说尤其具有挑战性,因为用于命名实体识别、语法解析和其他自然语言处理任务的现成工具很少可用。我们研究了人工注释对自动分析的影响。基于中古汉语语料库的实验结果表明,即使是相对少量的分词、词性和依存注释也能提高命名实体识别和字动关联识别的准确性,但不能提高字地名关联识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信