A New Method of SAR Image Reconstruction and Segmentation

Y. Kong, Jianjiang Zhou
{"title":"A New Method of SAR Image Reconstruction and Segmentation","authors":"Y. Kong, Jianjiang Zhou","doi":"10.1109/CAR.2009.45","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of the inherent characteristics of SAR images to improve Gibbs-MRF model for recovering SAR image. Further, it puts forward to segment SAR image into target and shadow with the theory of connectivity in digital morphology. The new method is not only using GAMMA distribution to replace the traditional Rayleigh distribution in the estimate of MAP (Maximum A Posteriori Probability, MAP), but also using the connectivity model of pixels intensity value relevance to extract goal better in the neighborhood of SAR image pixel space. This method takes full advantage of the relevance between the information of digital morphology of the SAR image and the pixel intense, and eliminates isolated points and obtains good segment results.","PeriodicalId":320307,"journal":{"name":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAR.2009.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes the use of the inherent characteristics of SAR images to improve Gibbs-MRF model for recovering SAR image. Further, it puts forward to segment SAR image into target and shadow with the theory of connectivity in digital morphology. The new method is not only using GAMMA distribution to replace the traditional Rayleigh distribution in the estimate of MAP (Maximum A Posteriori Probability, MAP), but also using the connectivity model of pixels intensity value relevance to extract goal better in the neighborhood of SAR image pixel space. This method takes full advantage of the relevance between the information of digital morphology of the SAR image and the pixel intense, and eliminates isolated points and obtains good segment results.
一种新的SAR图像重建与分割方法
本文提出利用SAR图像的固有特性对Gibbs-MRF模型进行改进,用于SAR图像的恢复。在此基础上,利用数字形态学中的连通性理论,提出了将SAR图像分割为目标和阴影的方法。该方法不仅在MAP (Maximum A Posteriori Probability, MAP)估计中使用GAMMA分布取代传统的Rayleigh分布,而且利用像元强度值相关性连通性模型在SAR图像像元空间的邻域内更好地提取目标。该方法充分利用了SAR图像数字形态信息与像素强度之间的相关性,消除了孤立点,获得了较好的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信