Improving Fuzzing Coverage with Execution Path Length Selection

Wenxian Zhang, Kazunori Sakamoto, H. Washizaki, Y. Fukazawa
{"title":"Improving Fuzzing Coverage with Execution Path Length Selection","authors":"Wenxian Zhang, Kazunori Sakamoto, H. Washizaki, Y. Fukazawa","doi":"10.1109/ISSREW55968.2022.00057","DOIUrl":null,"url":null,"abstract":"Coverage-guided fuzzing is one of the most effective types of fuzz testing. Code coverage is an important parameter of performance evaluation of the coverage-guided fuzzing tools since normally higher coverage result means a higher chance of fault detection. To expand the overall code covered, based on previous basic block analysis, we propose a method for selecting the mutants of inputs that are able to execute some specific length of the execution path.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coverage-guided fuzzing is one of the most effective types of fuzz testing. Code coverage is an important parameter of performance evaluation of the coverage-guided fuzzing tools since normally higher coverage result means a higher chance of fault detection. To expand the overall code covered, based on previous basic block analysis, we propose a method for selecting the mutants of inputs that are able to execute some specific length of the execution path.
用执行路径长度选择改进模糊覆盖
覆盖引导的模糊测试是最有效的模糊测试类型之一。代码覆盖率是覆盖率引导的模糊测试工具性能评估的一个重要参数,因为通常较高的覆盖率结果意味着较高的故障检测机会。为了扩展所涵盖的整体代码,基于前面的基本块分析,我们提出了一种方法,用于选择能够执行某些特定长度的执行路径的输入突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信