Entropy-based Deep Product Quantization for Visual Search and Deep Feature Compression

Benben Niu, Ziwei Wei, Yun He
{"title":"Entropy-based Deep Product Quantization for Visual Search and Deep Feature Compression","authors":"Benben Niu, Ziwei Wei, Yun He","doi":"10.1109/VCIP53242.2021.9675383","DOIUrl":null,"url":null,"abstract":"With the emergence of various machine-to-machine and machine-to-human tasks with deep learning, the amount of deep feature data is increasing. Deep product quantization is widely applied in deep feature retrieval tasks and has achieved good accuracy. However, it does not focus on the compression target primarily, and its output is a fixed-length quantization index, which is not suitable for subsequent compression. In this paper, we propose an entropy-based deep product quantization algorithm for deep feature compression. Firstly, it introduces entropy into hard and soft quantization strategies, which can adapt to the codebook optimization and codeword determination operations in the training and testing processes respectively. Secondly, the loss functions related to entropy are designed to adjust the distribution of quantization index, so that it can accommodate to the subsequent entropy coding module. Experimental results carried on retrieval tasks show that the proposed method can be generally combined with deep product quantization and its extended schemes, and can achieve a better compression performance under near lossless condition.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the emergence of various machine-to-machine and machine-to-human tasks with deep learning, the amount of deep feature data is increasing. Deep product quantization is widely applied in deep feature retrieval tasks and has achieved good accuracy. However, it does not focus on the compression target primarily, and its output is a fixed-length quantization index, which is not suitable for subsequent compression. In this paper, we propose an entropy-based deep product quantization algorithm for deep feature compression. Firstly, it introduces entropy into hard and soft quantization strategies, which can adapt to the codebook optimization and codeword determination operations in the training and testing processes respectively. Secondly, the loss functions related to entropy are designed to adjust the distribution of quantization index, so that it can accommodate to the subsequent entropy coding module. Experimental results carried on retrieval tasks show that the proposed method can be generally combined with deep product quantization and its extended schemes, and can achieve a better compression performance under near lossless condition.
基于熵的深度产品量化视觉搜索和深度特征压缩
随着各种机器对机器和机器对人的深度学习任务的出现,深度特征数据的数量不断增加。深度产品量化在深度特征检索任务中得到了广泛的应用,并取得了良好的精度。但是,它并不主要关注压缩目标,其输出是定长量化指标,不适合后续压缩。本文提出了一种基于熵的深度积量化算法用于深度特征压缩。首先,在硬量化和软量化策略中引入熵,分别适应训练和测试过程中的码本优化和码字确定操作;其次,设计与熵相关的损失函数,调整量化指标的分布,使其适应后续的熵编码模块;在检索任务中进行的实验结果表明,该方法可以与深度积量化及其扩展方案相结合,在近无损条件下获得较好的压缩性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信