M. Zamith, E. Passos, Diego N. Brandão, A. Montenegro, E. Clua, M. Kischinhevsky, R. Leal-Toledo
{"title":"Sound Wave Propagation Applied in Games","authors":"M. Zamith, E. Passos, Diego N. Brandão, A. Montenegro, E. Clua, M. Kischinhevsky, R. Leal-Toledo","doi":"10.1109/SBGAMES.2010.29","DOIUrl":null,"url":null,"abstract":"Many games and other interactive virtual environments are known for their focus in rendering natural phenomena, such as accurate visuals and physics, in the most believable manner. Several advances in the aforementioned fields took place during the last decade but, unfortunately, this effort has not been reflected in libraries for spatial audio. These libraries traditionally do not accurately simulate sound wave propagation through the virtual environment, never taking into consideration the speed of sound, reflection and absorbency by scene geometry, phenomena whose simulation could be used to render many interesting effects in real time. In this paper, we propose the use of a sound wave propagation simulation based on the finite difference method, running on the GPU, that can be used to compute how a sound pulse spreads through a virtual environment. In the prototypes implemented, the simulation data is interactively used to determine the perceived direction of a sound source in a closed building, and rendering a mimic of a shock-wave in an open scene","PeriodicalId":211123,"journal":{"name":"2010 Brazilian Symposium on Games and Digital Entertainment","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Brazilian Symposium on Games and Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBGAMES.2010.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Many games and other interactive virtual environments are known for their focus in rendering natural phenomena, such as accurate visuals and physics, in the most believable manner. Several advances in the aforementioned fields took place during the last decade but, unfortunately, this effort has not been reflected in libraries for spatial audio. These libraries traditionally do not accurately simulate sound wave propagation through the virtual environment, never taking into consideration the speed of sound, reflection and absorbency by scene geometry, phenomena whose simulation could be used to render many interesting effects in real time. In this paper, we propose the use of a sound wave propagation simulation based on the finite difference method, running on the GPU, that can be used to compute how a sound pulse spreads through a virtual environment. In the prototypes implemented, the simulation data is interactively used to determine the perceived direction of a sound source in a closed building, and rendering a mimic of a shock-wave in an open scene