Universal a posteriori metrics game

E. Abbe, R. Pulikkoonattu
{"title":"Universal a posteriori metrics game","authors":"E. Abbe, R. Pulikkoonattu","doi":"10.1109/CIG.2010.5592854","DOIUrl":null,"url":null,"abstract":"Over binary input channels, the uniform distribution is a universal prior, in the sense that it maximizes the worst case mutual information of all binary input channels and achieves at least 94.2% of the capacity. In this paper, we address a similar question. We look for the best collection of finitely many a posteriori metrics, to maximize the worst case mismatched mutual information achieved by decoding with these metrics (instead of an optimal decoder such as the Maximum Likelihood (ML) tuned to the true channel). It is shown that for binary input and output channels, two metrics suffice to actually achieve the same performance as an optimal decoder. In particular, this implies that there exist a decoder which is generalized linear and achieves at least 94.2% of the compound capacity on any compound set, without knowledge of the underlying set.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over binary input channels, the uniform distribution is a universal prior, in the sense that it maximizes the worst case mutual information of all binary input channels and achieves at least 94.2% of the capacity. In this paper, we address a similar question. We look for the best collection of finitely many a posteriori metrics, to maximize the worst case mismatched mutual information achieved by decoding with these metrics (instead of an optimal decoder such as the Maximum Likelihood (ML) tuned to the true channel). It is shown that for binary input and output channels, two metrics suffice to actually achieve the same performance as an optimal decoder. In particular, this implies that there exist a decoder which is generalized linear and achieves at least 94.2% of the compound capacity on any compound set, without knowledge of the underlying set.
Universal是一款后验参数游戏
在二进制输入信道上,均匀分布是一个普遍的先验,从某种意义上说,它最大化了所有二进制输入信道的最坏情况互信息,并至少达到94.2%的容量。在本文中,我们解决了一个类似的问题。我们寻找有限多个后验指标的最佳集合,以最大化通过使用这些指标解码(而不是优化解码器,如调到真实频道的最大似然(ML))实现的最坏情况下不匹配的互信息。结果表明,对于二进制输入和输出通道,两个指标足以实际实现与最佳解码器相同的性能。特别地,这意味着存在一种解码器,它是广义线性的,并且在不知道底层集合的情况下,在任何复合集合上达到至少94.2%的复合容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信