Mobile App Retrieval for Social Media Users via Inference of Implicit Intent in Social Media Text

Dae Hoon Park, Yi Fang, Mengwen Liu, ChengXiang Zhai
{"title":"Mobile App Retrieval for Social Media Users via Inference of Implicit Intent in Social Media Text","authors":"Dae Hoon Park, Yi Fang, Mengwen Liu, ChengXiang Zhai","doi":"10.1145/2983323.2983843","DOIUrl":null,"url":null,"abstract":"People often implicitly or explicitly express their needs in social media in the form of \"user status text\". Such text can be very useful for service providers and product manufacturers to proactively provide relevant services or products that satisfy people's immediate needs. In this paper, we study how to infer a user's intent based on the user's \"status text\" and retrieve relevant mobile apps that may satisfy the user's needs. We address this problem by framing it as a new entity retrieval task where the query is a user's status text and the entities to be retrieved are mobile apps. We first propose a novel approach that generates a new representation for each query. Our key idea is to leverage social media to build parallel corpora that contain implicit intention text and the corresponding explicit intention text. Specifically, we model various user intentions in social media text using topic models, and we predict user intention in a query that contains implicit intention. Then, we retrieve relevant mobile apps with the predicted user intention. We evaluate the mobile app retrieval task using a new data set we create. Experiment results indicate that the proposed model is effective and outperforms the state-of-the-art retrieval models.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

People often implicitly or explicitly express their needs in social media in the form of "user status text". Such text can be very useful for service providers and product manufacturers to proactively provide relevant services or products that satisfy people's immediate needs. In this paper, we study how to infer a user's intent based on the user's "status text" and retrieve relevant mobile apps that may satisfy the user's needs. We address this problem by framing it as a new entity retrieval task where the query is a user's status text and the entities to be retrieved are mobile apps. We first propose a novel approach that generates a new representation for each query. Our key idea is to leverage social media to build parallel corpora that contain implicit intention text and the corresponding explicit intention text. Specifically, we model various user intentions in social media text using topic models, and we predict user intention in a query that contains implicit intention. Then, we retrieve relevant mobile apps with the predicted user intention. We evaluate the mobile app retrieval task using a new data set we create. Experiment results indicate that the proposed model is effective and outperforms the state-of-the-art retrieval models.
基于社交媒体文本隐含意图推理的社交媒体用户移动应用检索
人们经常以“用户状态文本”的形式在社交媒体中或隐或明地表达自己的需求。这样的文本对于服务提供者和产品制造商主动提供满足人们即时需求的相关服务或产品是非常有用的。在本文中,我们研究了如何根据用户的“状态文本”推断用户的意图,并检索出可能满足用户需求的相关移动应用。我们通过将其构建为一个新的实体检索任务来解决这个问题,其中查询是用户的状态文本,要检索的实体是移动应用程序。我们首先提出了一种新方法,为每个查询生成新的表示。我们的关键思想是利用社交媒体构建包含隐含意图文本和相应的显性意图文本的平行语料库。具体来说,我们使用主题模型对社交媒体文本中的各种用户意图进行建模,并在包含隐含意图的查询中预测用户意图。然后,我们根据预测的用户意图检索相关的移动应用。我们使用我们创建的新数据集来评估移动应用程序检索任务。实验结果表明,该模型是有效的,并且优于目前最先进的检索模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信