Morphological component analysis based on mixed dictionary for signal denoising of ground penetrating radar

Jianhua Zhang, H. Zhang, Y. Li, Xueli Wu
{"title":"Morphological component analysis based on mixed dictionary for signal denoising of ground penetrating radar","authors":"Jianhua Zhang, H. Zhang, Y. Li, Xueli Wu","doi":"10.1504/ijspm.2019.10025771","DOIUrl":null,"url":null,"abstract":"Forward modelling is applied to simulate the ground penetrating radar (GPR) detection environment, and a modified morphological component analysis (MCA) algorithm is applied to GPR signal denoising. Finite-difference time-domain (FDTD) method is used to perform finite difference approximation to the space and time derivatives of Maxwell's equations. Under the forward simulation framework, the MCA algorithm applies a sparse dictionary to decompose the GPR signal. However, clutter is not represented as there is no corresponding sparse dictionary, the clutter is removed when the signal is reconstructed. The core of the MCA is to select a suitable dictionary. The combination of undecimated discrete wavelet transform (UDWT) dictionary and curvelet transform dictionary(CURVELET) is selected. The improved MCA algorithm is compared with singular value decomposition (SVD) and principal component analysis (PCA), to confirm the high performance of the proposed algorithm.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijspm.2019.10025771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Forward modelling is applied to simulate the ground penetrating radar (GPR) detection environment, and a modified morphological component analysis (MCA) algorithm is applied to GPR signal denoising. Finite-difference time-domain (FDTD) method is used to perform finite difference approximation to the space and time derivatives of Maxwell's equations. Under the forward simulation framework, the MCA algorithm applies a sparse dictionary to decompose the GPR signal. However, clutter is not represented as there is no corresponding sparse dictionary, the clutter is removed when the signal is reconstructed. The core of the MCA is to select a suitable dictionary. The combination of undecimated discrete wavelet transform (UDWT) dictionary and curvelet transform dictionary(CURVELET) is selected. The improved MCA algorithm is compared with singular value decomposition (SVD) and principal component analysis (PCA), to confirm the high performance of the proposed algorithm.
基于混合字典的形态成分分析在探地雷达信号去噪中的应用
采用正演模拟方法模拟探地雷达探测环境,采用改进的形态分量分析(MCA)算法对探地雷达信号进行去噪。利用时域有限差分(FDTD)方法对麦克斯韦方程组的空间导数和时间导数进行有限差分逼近。在正向仿真框架下,MCA算法采用稀疏字典对探地雷达信号进行分解。但是,由于没有相应的稀疏字典,杂波没有被表示出来,在重构信号时将杂波去除。MCA的核心是选择一本合适的字典。选择了未消差离散小波变换字典(UDWT)和曲线变换字典(curvelet)的组合。将改进的MCA算法与奇异值分解(SVD)和主成分分析(PCA)进行了比较,验证了该算法的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信