Fully Automatic Facial Action Recognition in Spontaneous Behavior

M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, Ian R. Fasel, J. Movellan
{"title":"Fully Automatic Facial Action Recognition in Spontaneous Behavior","authors":"M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, Ian R. Fasel, J. Movellan","doi":"10.1109/FGR.2006.55","DOIUrl":null,"url":null,"abstract":"We present results on a user independent fully automatic system for real time recognition of facial actions from the facial action coding system (FACS). The system automatically detects frontal faces in the video stream and codes each frame with respect to 20 action units. We present preliminary results on a task of facial action detection in spontaneous expressions during discourse. Support vector machines and AdaBoost classifiers are compared. For both classifiers, the output margin predicts action unit intensity","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"325","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 325

Abstract

We present results on a user independent fully automatic system for real time recognition of facial actions from the facial action coding system (FACS). The system automatically detects frontal faces in the video stream and codes each frame with respect to 20 action units. We present preliminary results on a task of facial action detection in spontaneous expressions during discourse. Support vector machines and AdaBoost classifiers are compared. For both classifiers, the output margin predicts action unit intensity
自发行为中的全自动面部动作识别
我们介绍了一个独立于用户的全自动系统,用于从面部动作编码系统(FACS)实时识别面部动作。系统自动检测视频流中的正面人脸,并根据20个动作单元对每帧进行编码。我们提出了一项关于话语中自发表情的面部动作检测任务的初步结果。比较了支持向量机和AdaBoost分类器。对于这两个分类器,输出余量预测动作单元强度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信