{"title":"Area and Energy Efficient Magnetic Full Adder based on Differential Spin Hall MRAM","authors":"Sanjay Prajapati, Z. Zilic, B. Kaushik","doi":"10.1109/NEWCAS.2018.8585712","DOIUrl":null,"url":null,"abstract":"The in-memory computing concept has gained significant attraction with the inception of perpendicular magnetic tunnel junction (PMTJ) device, due to its nonvolatility and CMOS compatibility. Recently, several magnetic full-adder (MFA) designs based on spin-transfer torque (STT) and spin- Hall effect (SHE) magnetic random access memories (MRAMs) have been demonstrated. However, they consume higher write energy and occupy larger area. In this work, a novel MFA using differential spin-Hall (DSH) MRAM is proposed. The DSH- MRAM provides simultaneous switching of two PMTJ devices using SHE and generates complementary logic outputs. The single Hall metal (HM) shared by these PMTJ devices offers a very low resistance path for write operation. In this work, an external magnetic field (EMF) is used to assist the SHE current for PMTJ switching that eliminates the need for a STT current. A SPICE-compatible Verilog-A MTJ behaviour model of the proposed MFA is developed. The EMF-assisted DSH-MRAM requires a very short pulse (300 ps) of SHE current to switch both the PMTJs. The proposed MFA exhibits 65% less time, consumes 93% (18%) less write (read) energy, and saves 23% area compared to recent STT/SHE-MTJ based MFA designs.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The in-memory computing concept has gained significant attraction with the inception of perpendicular magnetic tunnel junction (PMTJ) device, due to its nonvolatility and CMOS compatibility. Recently, several magnetic full-adder (MFA) designs based on spin-transfer torque (STT) and spin- Hall effect (SHE) magnetic random access memories (MRAMs) have been demonstrated. However, they consume higher write energy and occupy larger area. In this work, a novel MFA using differential spin-Hall (DSH) MRAM is proposed. The DSH- MRAM provides simultaneous switching of two PMTJ devices using SHE and generates complementary logic outputs. The single Hall metal (HM) shared by these PMTJ devices offers a very low resistance path for write operation. In this work, an external magnetic field (EMF) is used to assist the SHE current for PMTJ switching that eliminates the need for a STT current. A SPICE-compatible Verilog-A MTJ behaviour model of the proposed MFA is developed. The EMF-assisted DSH-MRAM requires a very short pulse (300 ps) of SHE current to switch both the PMTJs. The proposed MFA exhibits 65% less time, consumes 93% (18%) less write (read) energy, and saves 23% area compared to recent STT/SHE-MTJ based MFA designs.