Sung Min Kim, Sejoon Lee, E. B. Song, S. Seo, D. Seo, K. Wang
{"title":"Graphene-based embedded-oxide-trap memory (gEOTM) for flexible electronics application","authors":"Sung Min Kim, Sejoon Lee, E. B. Song, S. Seo, D. Seo, K. Wang","doi":"10.1109/ULIS.2012.6193346","DOIUrl":null,"url":null,"abstract":"A The non-volatile gEOTMs are fabricated using a single-layer graphene (SLG) channel with an Al2O3 gate oxide layer, in which an ion-bombarded AlOx layer is intentionally formed by oxygen ion bombardment (OIB) to create the charge trap sites. The whole processes are carried out at temperature below 120°C to exploit gEOTM's compatibility to the flexible substrates. The devices shows a large memory window (>; 11.0 V), attributing to the effective electron-injection into the trap sites in AlOx. The results suggest that the gEOTM has potential applications for the high-density-memory devices and modules in flexible electronics.","PeriodicalId":350544,"journal":{"name":"2012 13th International Conference on Ultimate Integration on Silicon (ULIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Conference on Ultimate Integration on Silicon (ULIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2012.6193346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A The non-volatile gEOTMs are fabricated using a single-layer graphene (SLG) channel with an Al2O3 gate oxide layer, in which an ion-bombarded AlOx layer is intentionally formed by oxygen ion bombardment (OIB) to create the charge trap sites. The whole processes are carried out at temperature below 120°C to exploit gEOTM's compatibility to the flexible substrates. The devices shows a large memory window (>; 11.0 V), attributing to the effective electron-injection into the trap sites in AlOx. The results suggest that the gEOTM has potential applications for the high-density-memory devices and modules in flexible electronics.