Ching-Chih Tsai, Ching-Zu Kuo, Chun-Chieh Chan, Xiao-Ci Wang
{"title":"Global path planning and navigation of an omnidirectional Mecanum mobile robot","authors":"Ching-Chih Tsai, Ching-Zu Kuo, Chun-Chieh Chan, Xiao-Ci Wang","doi":"10.1109/CACS.2013.6734112","DOIUrl":null,"url":null,"abstract":"This paper develops techniques and methodologies for global path planning and navigation of a Mecanum-wheeled omnidirectional mobile robot (MWOMR). The proposed navigation system is composed of three modules: odometry, nonsingular terminal sliding-mode (NTSM) dynamic motion controller, and global path planner, which have been implemented using the SoPC technology. The odometry is constructed by using a numerical method and a kinematic model of the robot, in order to keep track of the current position and orientation of the robot over short distances. A nonsingular terminal sliding-mode dynamic controller is well derived to achieve simultaneous point stabilization and trajectory tracking. A hybrid PSO (particle swarm optimization)-RGA (real-coded genetic algorithm) algorithm is proposed to find an optimal path between a starting and ending point in a given grid environment. Simulations and experimental results are conducted which have shown the feasibility and effectiveness of the proposed global path planning and navigation methods.","PeriodicalId":186492,"journal":{"name":"2013 CACS International Automatic Control Conference (CACS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 CACS International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS.2013.6734112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper develops techniques and methodologies for global path planning and navigation of a Mecanum-wheeled omnidirectional mobile robot (MWOMR). The proposed navigation system is composed of three modules: odometry, nonsingular terminal sliding-mode (NTSM) dynamic motion controller, and global path planner, which have been implemented using the SoPC technology. The odometry is constructed by using a numerical method and a kinematic model of the robot, in order to keep track of the current position and orientation of the robot over short distances. A nonsingular terminal sliding-mode dynamic controller is well derived to achieve simultaneous point stabilization and trajectory tracking. A hybrid PSO (particle swarm optimization)-RGA (real-coded genetic algorithm) algorithm is proposed to find an optimal path between a starting and ending point in a given grid environment. Simulations and experimental results are conducted which have shown the feasibility and effectiveness of the proposed global path planning and navigation methods.