Stability of steady states for Hartree and Schrödinger equations for infinitely many particles

Charles Collot, A. Suzzoni
{"title":"Stability of steady states for Hartree and Schrödinger equations for infinitely many particles","authors":"Charles Collot, A. Suzzoni","doi":"10.5802/ahl.127","DOIUrl":null,"url":null,"abstract":"We prove a scattering result for a Hartree equation for a random field. This equation describes the evolution of a system of infinitely many particles. It is an analogous formulation of the usual Hartree equation for density matrices. We treat dimensions 2 and 3, extending our previous result [11]. We reach a large class of interaction potentials, which includes the nonlinear Schrodinger equation. This result has an incidence in the density matrices framework. The proof relies on dispersive techniques used for the study of scattering for the nonlinear Schrodinger equation , and on the use of explicit low frequency cancellations as in [24]. To relate to density matrices, we use Strichartz estimates for orthonormal systems from [16], and improved Leibniz rules for integral operators.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We prove a scattering result for a Hartree equation for a random field. This equation describes the evolution of a system of infinitely many particles. It is an analogous formulation of the usual Hartree equation for density matrices. We treat dimensions 2 and 3, extending our previous result [11]. We reach a large class of interaction potentials, which includes the nonlinear Schrodinger equation. This result has an incidence in the density matrices framework. The proof relies on dispersive techniques used for the study of scattering for the nonlinear Schrodinger equation , and on the use of explicit low frequency cancellations as in [24]. To relate to density matrices, we use Strichartz estimates for orthonormal systems from [16], and improved Leibniz rules for integral operators.
无穷多粒子的Hartree方程和Schrödinger方程的稳态稳定性
我们证明了随机场的Hartree方程的散射结果。这个方程描述了一个由无限多个粒子组成的系统的演化。这是密度矩阵的哈特里方程的类似公式。我们对维度2和3进行处理,扩展了之前的结果[11]。我们得到了一大类相互作用势,其中包括非线性薛定谔方程。这个结果在密度矩阵框架中有关联。该证明依赖于用于研究非线性薛定谔方程散射的色散技术,以及[24]中使用的显式低频消去。为了与密度矩阵相关,我们使用了来自[16]的标准正交系统的Strichartz估计,并改进了积分算子的Leibniz规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信