Handprinted digit recognition using spatiotemporal connectionist models

T. Fontaine, L. Shastri
{"title":"Handprinted digit recognition using spatiotemporal connectionist models","authors":"T. Fontaine, L. Shastri","doi":"10.1109/CVPR.1992.223277","DOIUrl":null,"url":null,"abstract":"A connectionist model for recognizing unconstrained handprinted digits is described. Instead of treating the input as a static signal, the image is canned over time and converted into a time-varying signal. The temporalized image is processed by a spatiotemporal connectionist network. The resulting system offers shift-invariance along the temporalized axis, a reduction in the number of free parameters, and the ability to process images of arbitrary length. For a set of real-world ZIP code digit images, the system achieved a 99.1% recognition rate on the training set and a 96.0% recognition rate on the test with no rejections. A 99.0% recognition rate on the test set was achieved when 14.6% of the images were rejected.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A connectionist model for recognizing unconstrained handprinted digits is described. Instead of treating the input as a static signal, the image is canned over time and converted into a time-varying signal. The temporalized image is processed by a spatiotemporal connectionist network. The resulting system offers shift-invariance along the temporalized axis, a reduction in the number of free parameters, and the ability to process images of arbitrary length. For a set of real-world ZIP code digit images, the system achieved a 99.1% recognition rate on the training set and a 96.0% recognition rate on the test with no rejections. A 99.0% recognition rate on the test set was achieved when 14.6% of the images were rejected.<>
使用时空关联模型的手印数字识别
描述了一种用于识别无约束手印数字的联结主义模型。不是将输入作为静态信号处理,而是将图像随时间保存并转换为时变信号。时间化后的图像通过时空连接网络进行处理。由此产生的系统提供了沿时间轴的平移不变性,减少了自由参数的数量,并且能够处理任意长度的图像。对于一组真实世界的邮政编码数字图像,系统在训练集上达到了99.1%的识别率,在测试中达到了96.0%的识别率,没有拒绝。当14.6%的图像被拒绝时,测试集的识别率达到了99.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信