Image Processing Techniques to Identify Red Blood Cells

Nicoleta Safca, D. Popescu, L. Ichim, H. Elkhatib, Oana Chenaru
{"title":"Image Processing Techniques to Identify Red Blood Cells","authors":"Nicoleta Safca, D. Popescu, L. Ichim, H. Elkhatib, Oana Chenaru","doi":"10.1109/ICSTCC.2018.8540708","DOIUrl":null,"url":null,"abstract":"This paper presents a method for the automatic identification and classification of red cells in different classes of interest for diagnosis using microscopic images of blood smear. The whole system uses different image processing techniques such as binarization, contrast enhancement, noise elimination, morphological operations (dilatation, erosion), labeling and extraction of some features of interest (area, perimeter, diameter). Using this information, some factors (form factor, circularity factor, and deviation factor) involved in the classification of red cells are calculated. The classification process has two phases: the first separates red cells in normal and abnormal type and the second classifies the abnormal in three subclasses. This system does not aim to replace the pathologist, but to assist him / her and to improve the execution time of these types of analyzes.","PeriodicalId":308427,"journal":{"name":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2018.8540708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a method for the automatic identification and classification of red cells in different classes of interest for diagnosis using microscopic images of blood smear. The whole system uses different image processing techniques such as binarization, contrast enhancement, noise elimination, morphological operations (dilatation, erosion), labeling and extraction of some features of interest (area, perimeter, diameter). Using this information, some factors (form factor, circularity factor, and deviation factor) involved in the classification of red cells are calculated. The classification process has two phases: the first separates red cells in normal and abnormal type and the second classifies the abnormal in three subclasses. This system does not aim to replace the pathologist, but to assist him / her and to improve the execution time of these types of analyzes.
识别红细胞的图像处理技术
本文提出了一种利用血液涂片显微图像自动识别和分类不同类型的红细胞用于诊断的方法。整个系统使用了不同的图像处理技术,如二值化、对比度增强、噪声消除、形态学操作(扩张、侵蚀)、标记和提取一些感兴趣的特征(面积、周长、直径)。利用这些信息,计算了红细胞分类中涉及的一些因素(形状因素、圆度因素和偏差因素)。分类过程分为两个阶段:第一步将红细胞分为正常型和异常型,第二步将异常红细胞分为三个亚类。该系统的目的不是取代病理学家,而是协助他/她并改善这些类型分析的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信