Principal components analysis.

D. Quicke, B. A. Butcher, R. K. Welton
{"title":"Principal components analysis.","authors":"D. Quicke, B. A. Butcher, R. K. Welton","doi":"10.1079/9781789245349.0194","DOIUrl":null,"url":null,"abstract":"Abstract\n This chapter focuses on how to conduct a principal components analysis. To conduct principal components analysis, R has two similar built-in functions prcomp and princomp in the default stats package. Other implementations can be found in various downloadable packages, e.g. the function PCA from the package FactoMineR, the function dudi.pca from the package ade4 and the function acp from the package amap. The functions prcomp and princomp employ different calculation methods but in practice the results they return will be almost identical.","PeriodicalId":167700,"journal":{"name":"Practical R for biologists: an introduction","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical R for biologists: an introduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781789245349.0194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This chapter focuses on how to conduct a principal components analysis. To conduct principal components analysis, R has two similar built-in functions prcomp and princomp in the default stats package. Other implementations can be found in various downloadable packages, e.g. the function PCA from the package FactoMineR, the function dudi.pca from the package ade4 and the function acp from the package amap. The functions prcomp and princomp employ different calculation methods but in practice the results they return will be almost identical.
主成分分析。
本章主要研究如何进行主成分分析。为了进行主成分分析,R在默认的stats包中有两个类似的内置函数prcomp和princomp。其他实现可以在各种可下载的包中找到,例如FactoMineR包中的PCA函数,dudi函数。来自包ade4的Pca和来自包map的函数acp。函数prcomp和princomp使用不同的计算方法,但实际上它们返回的结果几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信