A Deep Learning Scheme for Integrated Active and Passive Beamforming in Reconfigurable Intelligent Surface Aided Wireless MISO Networks

Venkata Deepika Potu, Venkataiah Sunku, Mounika M., Priya S. B. M.
{"title":"A Deep Learning Scheme for Integrated Active and Passive Beamforming in Reconfigurable Intelligent Surface Aided Wireless MISO Networks","authors":"Venkata Deepika Potu, Venkataiah Sunku, Mounika M., Priya S. B. M.","doi":"10.1109/wispnet54241.2022.9767159","DOIUrl":null,"url":null,"abstract":"The fifth-generation wireless networks deployment has stared since 2020. We consider a Reconfigurable Intelligent Surface (RIS) aided multi-user multiple-input single-output (MISO) downlink system in this work. The RIS elements phase shift and beamforming matrices are optimized together to achieve maximum sum rate. The iterative optimization algorithms are adopted in most of the prior works to get suboptimal solutions, which are computationally complex. In this work, a deep learning based approach is proposed to decrease computational complexity for integrated active and passive beamforming with adequate performance. We propose an unsupervised two-stage neural network that can be trained and implemented online for real-time prediction.","PeriodicalId":432794,"journal":{"name":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wispnet54241.2022.9767159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fifth-generation wireless networks deployment has stared since 2020. We consider a Reconfigurable Intelligent Surface (RIS) aided multi-user multiple-input single-output (MISO) downlink system in this work. The RIS elements phase shift and beamforming matrices are optimized together to achieve maximum sum rate. The iterative optimization algorithms are adopted in most of the prior works to get suboptimal solutions, which are computationally complex. In this work, a deep learning based approach is proposed to decrease computational complexity for integrated active and passive beamforming with adequate performance. We propose an unsupervised two-stage neural network that can be trained and implemented online for real-time prediction.
一种可重构智能表面辅助无线MISO网络主被动波束形成集成的深度学习方案
第五代无线网络部署从2020年开始。在这项工作中,我们考虑了一个可重构智能表面(RIS)辅助的多用户多输入单输出(MISO)下行系统。RIS单元相移和波束形成矩阵一起优化,以达到最大的和速率。以往的研究大多采用迭代优化算法求解次优解,计算量大。在这项工作中,提出了一种基于深度学习的方法来降低集成主动式和被动式波束形成的计算复杂度,并具有足够的性能。我们提出了一个无监督的两阶段神经网络,可以在线训练和实现实时预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信