A Method of Improved CNN Traffic Classification

Huiyi Zhou, Yong Wang, Xiaochun Lei, Yuming Liu
{"title":"A Method of Improved CNN Traffic Classification","authors":"Huiyi Zhou, Yong Wang, Xiaochun Lei, Yuming Liu","doi":"10.1109/CIS.2017.00046","DOIUrl":null,"url":null,"abstract":"A traffic classification algorithm based on improved convolution neural network is proposed in this paper. It aims to improve the traditional traffic classification method. Firstly, the min-max normalization method is used to process the traffic data and map them into gray image, which will be used as the input data of convolution neural network to realize the independent feature learning. Then, an improved structure of the classical convolution neural network is proposed, both of the parameters of the feature map and the full connection layer are designed to select the optimal classification model to realize the traffic classification. Compared with the traditional classification method, the experimental results show that the proposed CNN traffic classification method can improve the accuracy and reduce the time of classification.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

A traffic classification algorithm based on improved convolution neural network is proposed in this paper. It aims to improve the traditional traffic classification method. Firstly, the min-max normalization method is used to process the traffic data and map them into gray image, which will be used as the input data of convolution neural network to realize the independent feature learning. Then, an improved structure of the classical convolution neural network is proposed, both of the parameters of the feature map and the full connection layer are designed to select the optimal classification model to realize the traffic classification. Compared with the traditional classification method, the experimental results show that the proposed CNN traffic classification method can improve the accuracy and reduce the time of classification.
一种改进的CNN流量分类方法
提出了一种基于改进卷积神经网络的流量分类算法。它旨在改进传统的流量分类方法。首先,采用最小-最大归一化方法对交通数据进行处理,并将其映射成灰度图像,作为卷积神经网络的输入数据,实现独立特征学习。然后,提出了一种改进的经典卷积神经网络结构,设计了特征映射参数和全连接层参数,以选择最优分类模型实现流量分类;实验结果表明,与传统分类方法相比,本文提出的CNN流量分类方法可以提高分类准确率,减少分类时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信