Mining Apps for Abnormal Usage of Sensitive Data

Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, A. Zeller, Steven Arzt, Siegfried Rasthofer, E. Bodden
{"title":"Mining Apps for Abnormal Usage of Sensitive Data","authors":"Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, A. Zeller, Steven Arzt, Siegfried Rasthofer, E. Bodden","doi":"10.1109/ICSE.2015.61","DOIUrl":null,"url":null,"abstract":"What is it that makes an app malicious? One important factor is that malicious apps treat sensitive data differently from benign apps. To capture such differences, we mined 2,866 benign Android applications for their data flow from sensitive sources, and compare these flows against those found in malicious apps. We find that (a) for every sensitive source, the data ends up in a small number of typical sinks; (b) these sinks differ considerably between benign and malicious apps; (c) these differences can be used to flag malicious apps due to their abnormal data flow; and (d) malicious apps can be identified by their abnormal data flow alone, without requiring known malware samples. In our evaluation, our MUDFLOW prototype correctly identified 86.4% of all novel malware, and 90.1% of novel malware leaking sensitive data.","PeriodicalId":330487,"journal":{"name":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"270","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2015.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 270

Abstract

What is it that makes an app malicious? One important factor is that malicious apps treat sensitive data differently from benign apps. To capture such differences, we mined 2,866 benign Android applications for their data flow from sensitive sources, and compare these flows against those found in malicious apps. We find that (a) for every sensitive source, the data ends up in a small number of typical sinks; (b) these sinks differ considerably between benign and malicious apps; (c) these differences can be used to flag malicious apps due to their abnormal data flow; and (d) malicious apps can be identified by their abnormal data flow alone, without requiring known malware samples. In our evaluation, our MUDFLOW prototype correctly identified 86.4% of all novel malware, and 90.1% of novel malware leaking sensitive data.
挖掘应用程序异常使用敏感数据
是什么使一个应用程序成为恶意的?一个重要的因素是,恶意应用对待敏感数据的方式与良性应用不同。为了捕捉这些差异,我们从敏感来源挖掘了2,866个良性Android应用程序的数据流,并将这些流与恶意应用程序中的数据流进行了比较。我们发现(a)对于每一个敏感源,数据最终在少数典型汇中结束;(b)这些汇在良性和恶意应用程序之间差异很大;(c)这些差异可用于标记恶意应用程序,因为它们的异常数据流;(d)恶意应用程序可以通过其异常数据流单独识别,而不需要已知的恶意软件样本。在我们的评估中,我们的MUDFLOW原型正确识别了86.4%的新型恶意软件,以及90.1%的泄漏敏感数据的新型恶意软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信