Inverse semigroup equivariant $KK$-theory and $C^*$-extensions

B. Burgstaller
{"title":"Inverse semigroup equivariant $KK$-theory and $C^*$-extensions","authors":"B. Burgstaller","doi":"10.7153/OAM-10-27","DOIUrl":null,"url":null,"abstract":"In this note we extend the classical result by G. G. Kasparov that the Kasparov groups $KK_1(A,B)$ can be identified with the extension groups $\\mbox{Ext}(A,B)$ to the inverse semigroup equivariant setting. More precisely, we show that $KK_G^1(A,B) \\cong \\mbox{Ext}_G(A \\otimes {\\cal K}_G,B \\otimes {\\cal K}_G)$ for every countable, $E$-continuous inverse semigroup $G$. For locally compact second countable groups $G$ this was proved by K. Thomsen, and technically this note presents an adaption of his proof.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/OAM-10-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this note we extend the classical result by G. G. Kasparov that the Kasparov groups $KK_1(A,B)$ can be identified with the extension groups $\mbox{Ext}(A,B)$ to the inverse semigroup equivariant setting. More precisely, we show that $KK_G^1(A,B) \cong \mbox{Ext}_G(A \otimes {\cal K}_G,B \otimes {\cal K}_G)$ for every countable, $E$-continuous inverse semigroup $G$. For locally compact second countable groups $G$ this was proved by K. Thomsen, and technically this note presents an adaption of his proof.
逆半群等变$KK$-理论与$C^*$-扩展
本文将卡斯帕罗夫(G. G. Kasparov)关于Kasparov群$KK_1(A,B)$可以用扩展群$\mbox{Ext}(A,B)$识别的经典结果推广到逆半群等变集。更准确地说,我们证明了$KK_G^1(A,B) \cong \mbox{Ext}_G(A \otimes {\cal K}_G,B \otimes {\cal K}_G)$对于每一个可数的$E$ -连续的逆半群$G$。对于局部紧第二可数群$G$,这是由K. Thomsen证明的,从技术上讲,本文是对他的证明的一个改编。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信