Loop Interaction Analysis and Control Structure Selection: Application to a Fluid Catalytic Cracking Unit

P. Josiah, J. Nwalor, T. O. Ajayi
{"title":"Loop Interaction Analysis and Control Structure Selection: Application to a Fluid Catalytic Cracking Unit","authors":"P. Josiah, J. Nwalor, T. O. Ajayi","doi":"10.7176/cti/8-03","DOIUrl":null,"url":null,"abstract":"A simulation approach for the assessment of variables interaction and consequent control structure selection of a fluid catalytic cracking unit (FCCU) is presented in this paper. The simulator which was implemented in Matlab draws from an earlier mathematical model of the FCCU, was used as a virtual FCCU for studying the dynamic response of the riser temperature (T rx ), the regenerator temperature (T rg ) and the regenerator flue gas oxygen concentration (O d ) to step changes in air flow rate (F a ), regenerated catalyst flow rate (F rc ), gas oil feed rate (F gr ). The results show strong interaction in FCCU variables, with F a affecting T rg and O d ; F rc affecting T rx, T rg and O d ; F gr affecting T rx , T rg and O d . A linearised state-space model based on the first-principle model was deduced and transformed to a 3x3 input-output model. Three channel interaction measures: Relative Gain Array (RGA), Effective Relative Gain Array (ERGA) and the Normalized Relative Gain Array (RNGA) were applied to the selection of FCCU control structure. All the measures point to a diagonal scheme with the following pairings: (T rx /F gr ), (T rg /F a ) and (O d /F rc ) ,for the decentralized control of the riser temperature, the regenerator temperature and the flue gas oxygen concentration respectively. The suggested control structure offers a high promise of stability, with a Niederlinski index (NI) of 101.79. DOI : 10.7176/CTI/8-03","PeriodicalId":437485,"journal":{"name":"Control Theory and Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Theory and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7176/cti/8-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A simulation approach for the assessment of variables interaction and consequent control structure selection of a fluid catalytic cracking unit (FCCU) is presented in this paper. The simulator which was implemented in Matlab draws from an earlier mathematical model of the FCCU, was used as a virtual FCCU for studying the dynamic response of the riser temperature (T rx ), the regenerator temperature (T rg ) and the regenerator flue gas oxygen concentration (O d ) to step changes in air flow rate (F a ), regenerated catalyst flow rate (F rc ), gas oil feed rate (F gr ). The results show strong interaction in FCCU variables, with F a affecting T rg and O d ; F rc affecting T rx, T rg and O d ; F gr affecting T rx , T rg and O d . A linearised state-space model based on the first-principle model was deduced and transformed to a 3x3 input-output model. Three channel interaction measures: Relative Gain Array (RGA), Effective Relative Gain Array (ERGA) and the Normalized Relative Gain Array (RNGA) were applied to the selection of FCCU control structure. All the measures point to a diagonal scheme with the following pairings: (T rx /F gr ), (T rg /F a ) and (O d /F rc ) ,for the decentralized control of the riser temperature, the regenerator temperature and the flue gas oxygen concentration respectively. The suggested control structure offers a high promise of stability, with a Niederlinski index (NI) of 101.79. DOI : 10.7176/CTI/8-03
回路相互作用分析及控制结构选择:在流体催化裂化装置上的应用
提出了一种流体催化裂化装置变量相互作用评估及控制结构选择的仿真方法。利用Matlab实现的仿真器借鉴了较早的催化裂化装置数学模型,作为虚拟催化裂化装置,研究了提升管温度(T rx)、再生器温度(T rg)和再生器烟气氧浓度(O d)对空气流速(F a)、再生催化剂流速(F rc)、油气进料速率(F gr)阶跃变化的动态响应。结果表明,催化裂化反应各变量之间存在较强的交互作用,其中fa影响trg和od;frc对trx、trg和od的影响;F影响trx, trg和od。推导了基于第一性原理模型的线性化状态空间模型,并将其转化为3x3的输入输出模型。采用相对增益阵列(RGA)、有效相对增益阵列(ERGA)和归一化相对增益阵列(RNGA)三种通道交互测量方法来选择催化裂化装置的控制结构。所有措施都指向一个对角线方案,其配对如下:(T rx /F gr), (T rg /F a)和(O d /F rc),分别用于分散控制立管温度,蓄热器温度和烟气氧浓度。所建议的控制结构具有很高的稳定性,Niederlinski指数(NI)为101.79。Doi: 10.7176/ cti /8-03
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信