Semi-Supervised DFF: Decoupling Detection and Feature Flow for Video Object Detectors

Guangxing Han, Xuan Zhang, Chongrong Li
{"title":"Semi-Supervised DFF: Decoupling Detection and Feature Flow for Video Object Detectors","authors":"Guangxing Han, Xuan Zhang, Chongrong Li","doi":"10.1145/3240508.3240693","DOIUrl":null,"url":null,"abstract":"For efficient video object detection, our detector consists of a spatial module and a temporal module. The spatial module aims to detect objects in static frames using convolutional networks, and the temporal module propagates high-level CNN features to nearby frames via light-weight feature flow. Alternating the spatial and temporal module by a proper interval makes our detector fast and accurate. Then we propose a two-stage semi-supervised learning framework to train our detector, which fully exploits unlabeled videos by decoupling the spatial and temporal module. In the first stage, the spatial module is learned by traditional supervised learning. In the second stage, we employ both feature regression loss and feature semantic loss to learn our temporal module via unsupervised learning. Different to traditional methods, our method can largely exploit unlabeled videos and bridges the gap of object detectors in image and video domain. Experiments on the large-scale ImageNet VID dataset demonstrate the effectiveness of our method. Code will be made publicly available.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"27 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

For efficient video object detection, our detector consists of a spatial module and a temporal module. The spatial module aims to detect objects in static frames using convolutional networks, and the temporal module propagates high-level CNN features to nearby frames via light-weight feature flow. Alternating the spatial and temporal module by a proper interval makes our detector fast and accurate. Then we propose a two-stage semi-supervised learning framework to train our detector, which fully exploits unlabeled videos by decoupling the spatial and temporal module. In the first stage, the spatial module is learned by traditional supervised learning. In the second stage, we employ both feature regression loss and feature semantic loss to learn our temporal module via unsupervised learning. Different to traditional methods, our method can largely exploit unlabeled videos and bridges the gap of object detectors in image and video domain. Experiments on the large-scale ImageNet VID dataset demonstrate the effectiveness of our method. Code will be made publicly available.
半监督DFF:视频目标检测器的解耦检测和特征流
为了实现高效的视频目标检测,我们的检测器由空间模块和时间模块组成。空间模块旨在使用卷积网络检测静态帧中的物体,时间模块通过轻量级特征流将高级CNN特征传播到附近的帧。以适当的间隔交替空间和时间模块,使我们的检测器快速准确。然后,我们提出了一个两阶段的半监督学习框架来训练我们的检测器,该检测器通过解耦空间和时间模块来充分利用未标记的视频。在第一阶段,空间模块通过传统的监督学习进行学习。在第二阶段,我们使用特征回归损失和特征语义损失通过无监督学习来学习我们的时间模块。与传统方法不同的是,我们的方法可以在很大程度上利用未标记的视频,弥补了图像和视频领域目标检测器的空白。在大规模ImageNet VID数据集上的实验验证了该方法的有效性。代码将公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信