Handling Out-of-Vocabulary Words in Lexicons to Polarity Classification

Gabriel Nascimento, Fellipe Duarte, G. Guedes
{"title":"Handling Out-of-Vocabulary Words in Lexicons to Polarity Classification","authors":"Gabriel Nascimento, Fellipe Duarte, G. Guedes","doi":"10.1145/3274192.3274239","DOIUrl":null,"url":null,"abstract":"Emotions play an important role in the area of Human-Computer Interaction (HCI). Sentiment Analysis (SA) aims to detect these emotions in text and, some SA tasks use lexicons to infer valence polarity from a text. Moreover, attributes extracted from lexicons such as Wordnet and LIWC have widespread use in AS tasks. However, one of the major challenges in using these lexicons is the absence of words in the vocabulary given that these words may contain valuable information for the SA task and therefore cannot be discarded. This paper proposes a new algorithm, named IKLex, to infer features to out-of-vocabulary words of LIWC lexicons using word embeddings. The experiments carried out with IKLex present promising results when applying the state-of-art classifiers of the polarity classification task in two datasets with different languages: Brazilian Portuguese and English. There was an improvement of at least 1% in the F1 score of the evaluated classifiers.","PeriodicalId":314561,"journal":{"name":"Proceedings of the 17th Brazilian Symposium on Human Factors in Computing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th Brazilian Symposium on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274192.3274239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Emotions play an important role in the area of Human-Computer Interaction (HCI). Sentiment Analysis (SA) aims to detect these emotions in text and, some SA tasks use lexicons to infer valence polarity from a text. Moreover, attributes extracted from lexicons such as Wordnet and LIWC have widespread use in AS tasks. However, one of the major challenges in using these lexicons is the absence of words in the vocabulary given that these words may contain valuable information for the SA task and therefore cannot be discarded. This paper proposes a new algorithm, named IKLex, to infer features to out-of-vocabulary words of LIWC lexicons using word embeddings. The experiments carried out with IKLex present promising results when applying the state-of-art classifiers of the polarity classification task in two datasets with different languages: Brazilian Portuguese and English. There was an improvement of at least 1% in the F1 score of the evaluated classifiers.
词典中词汇外词的极性分类处理
情感在人机交互(HCI)领域中扮演着重要的角色。情感分析的目的是检测文本中的情感,一些情感分析任务使用词汇从文本中推断出价极性。此外,从Wordnet和LIWC等词汇中提取的属性在as任务中有广泛的应用。然而,使用这些词汇的主要挑战之一是词汇表中缺少单词,因为这些单词可能包含对SA任务有价值的信息,因此不能丢弃。本文提出了一种利用词嵌入对LIWC词典中的词汇外词进行特征推断的新算法IKLex。利用IKLex进行的实验表明,在巴西葡萄牙语和英语两种不同语言的数据集上,应用目前最先进的分类器进行极性分类任务,取得了令人满意的结果。评估的分类器的F1分数至少提高了1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信