Application of Soft Computing to Tax Fraud Detection in Small Businesses

C. Thang, P. Q. Toan, E. Cooper, K. Kamei
{"title":"Application of Soft Computing to Tax Fraud Detection in Small Businesses","authors":"C. Thang, P. Q. Toan, E. Cooper, K. Kamei","doi":"10.1109/CCE.2006.350887","DOIUrl":null,"url":null,"abstract":"In this paper, we present a soft computing model for tax fraud detection in small firms and businesses. Inputs to the model are periodical finance reports and related information about market and inspection firms, and outputs are an inference of the tax fraud status. First, after using fuzzy inferences, the system determines a close business class to which the inspected firms belong. Next, training by statistical data from the business class, neural network (NN) is used to determine the fraud status of the inspected firm. Training data for the NN is periodical finance reports, market information of the business class and fraud history of the inspected firms. Finally, we describe initial evaluations and our future works.","PeriodicalId":148533,"journal":{"name":"2006 First International Conference on Communications and Electronics","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 First International Conference on Communications and Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2006.350887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present a soft computing model for tax fraud detection in small firms and businesses. Inputs to the model are periodical finance reports and related information about market and inspection firms, and outputs are an inference of the tax fraud status. First, after using fuzzy inferences, the system determines a close business class to which the inspected firms belong. Next, training by statistical data from the business class, neural network (NN) is used to determine the fraud status of the inspected firm. Training data for the NN is periodical finance reports, market information of the business class and fraud history of the inspected firms. Finally, we describe initial evaluations and our future works.
软计算在小企业税务欺诈检测中的应用
在本文中,我们提出了一个用于小企业税务欺诈检测的软计算模型。模型的输入是定期财务报告以及有关市场和检查公司的相关信息,输出是对税务欺诈状况的推断。首先,在使用模糊推理后,系统确定被检查公司所属的接近的商业类别。接下来,通过商业类的统计数据进行训练,使用神经网络(NN)来确定被检查公司的欺诈状态。神经网络的训练数据是定期财务报告、业务类别的市场信息和被检查公司的欺诈历史。最后,我们描述了初步评估和我们未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信