Unsupervised Concept Drift Detection Using Dynamic Crucial Feature Distribution Test in Data Streams

Yen-Ning Wan, Bijay Prasad Jaysawal, Jen-Wei Huang
{"title":"Unsupervised Concept Drift Detection Using Dynamic Crucial Feature Distribution Test in Data Streams","authors":"Yen-Ning Wan, Bijay Prasad Jaysawal, Jen-Wei Huang","doi":"10.1109/TAAI57707.2022.00033","DOIUrl":null,"url":null,"abstract":"Distribution of data often changes over time and leads to the unpredictable changes in the implicit information behind data streams. This phenomenon is referred to as Concept Drift. The accuracy of conventional models reduces as time goes by, and old models are rendered impractical. In this paper, we propose a novel approach for solving the concept drift detection problem using the unsupervised method and focusing on the dynamic crucial feature distribution test. Extensive experiments have been done to evaluate the performance of the proposed method against classic and state-of-the-art methods. Experimental results demonstrate the efficacy of the proposed model when applied to synthetic as well as real-world datasets.","PeriodicalId":111620,"journal":{"name":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI57707.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distribution of data often changes over time and leads to the unpredictable changes in the implicit information behind data streams. This phenomenon is referred to as Concept Drift. The accuracy of conventional models reduces as time goes by, and old models are rendered impractical. In this paper, we propose a novel approach for solving the concept drift detection problem using the unsupervised method and focusing on the dynamic crucial feature distribution test. Extensive experiments have been done to evaluate the performance of the proposed method against classic and state-of-the-art methods. Experimental results demonstrate the efficacy of the proposed model when applied to synthetic as well as real-world datasets.
基于数据流动态关键特征分布测试的无监督概念漂移检测
数据的分布经常随着时间的推移而变化,并导致数据流背后的隐式信息发生不可预测的变化。这种现象被称为概念漂移。传统模型的准确性随着时间的推移而降低,旧模型变得不切实际。在本文中,我们提出了一种新的方法来解决概念漂移检测问题,使用无监督方法,重点关注动态关键特征分布测试。已经做了大量的实验来评估所提出的方法与经典和最先进的方法的性能。实验结果证明了该模型在实际数据集和合成数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信