A criterion for the approximation of a semicontinuous functional by Lipschitz functional

V. Prudnikov, A. G. Podgaev
{"title":"A criterion for the approximation of a semicontinuous functional by Lipschitz functional","authors":"V. Prudnikov, A. G. Podgaev","doi":"10.47910/femj202208","DOIUrl":null,"url":null,"abstract":"It is proved in [1, 2] that a functional semi-continuous from below and bounded from below in the metric space X is represented as the limit of a non-decreasing family of Lipschitz functionals. In the lemma from [3], a sufficient condition for such a representation is given for a function semi-continuous from below with respect to one of the variables in a finite-dimensional space. This paper contains a criterion for approximation of a semi-continuous functional from below in a metric space by Lipschitz functionals.","PeriodicalId":388451,"journal":{"name":"Dal'nevostochnyi Matematicheskii Zhurnal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dal'nevostochnyi Matematicheskii Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47910/femj202208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is proved in [1, 2] that a functional semi-continuous from below and bounded from below in the metric space X is represented as the limit of a non-decreasing family of Lipschitz functionals. In the lemma from [3], a sufficient condition for such a representation is given for a function semi-continuous from below with respect to one of the variables in a finite-dimensional space. This paper contains a criterion for approximation of a semi-continuous functional from below in a metric space by Lipschitz functionals.
用Lipschitz泛函逼近半连续泛函的一个判据
在[1,2]中证明了度量空间X中自下有界的泛函半连续可以表示为非递减Lipschitz泛函族的极限。在[3]的引理中,对于有限维空间中某变量的自下半连续函数,给出了这种表示的一个充分条件。本文给出了用Lipschitz泛函在度量空间中从下逼近半连续泛函的一个判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信