A neural network structure with parameter expansion for adaptive modeling of dynamic systems

Erwin Sitompul
{"title":"A neural network structure with parameter expansion for adaptive modeling of dynamic systems","authors":"Erwin Sitompul","doi":"10.1109/ICITEED.2014.7007958","DOIUrl":null,"url":null,"abstract":"A new neural network structure for adaptive modeling of dynamic system is presented in this paper. Based on multi-layer perceptron (MLP), the network possesses parameter expansion and external recurrence. Parameter expansion is obtained by using tapped delay lines (TDLs) to the outputs of the hidden layer. This increases the number of parameters between the hidden layer and the output layer. Furthermore, external recurrence is obtained by connecting the output and the input of the network. Proper learning algorithm is derived to accommodate the aforementioned modifications. Afterwards, the network is integrated in an adaptive scheme so that it can model systems with changing property or operating condition. The application in modeling of a water tank system demonstrates the ability of the proposed scheme.","PeriodicalId":148115,"journal":{"name":"2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2014.7007958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new neural network structure for adaptive modeling of dynamic system is presented in this paper. Based on multi-layer perceptron (MLP), the network possesses parameter expansion and external recurrence. Parameter expansion is obtained by using tapped delay lines (TDLs) to the outputs of the hidden layer. This increases the number of parameters between the hidden layer and the output layer. Furthermore, external recurrence is obtained by connecting the output and the input of the network. Proper learning algorithm is derived to accommodate the aforementioned modifications. Afterwards, the network is integrated in an adaptive scheme so that it can model systems with changing property or operating condition. The application in modeling of a water tank system demonstrates the ability of the proposed scheme.
用于动态系统自适应建模的参数展开神经网络结构
提出了一种新的用于动态系统自适应建模的神经网络结构。该网络基于多层感知器(MLP),具有参数展开性和外部递归性。通过对隐层输出使用抽头延迟线(tdl)实现参数展开。这增加了隐藏层和输出层之间的参数数量。此外,通过连接网络的输出和输入,得到外部递归。并推导出适当的学习算法以适应上述修改。然后,将网络集成到一个自适应方案中,使其能够对属性或运行条件变化的系统进行建模。在水箱系统建模中的应用验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信