Circumscribed Mass Detection in Digital Mammograms

M.V.C. Cruz, P. R. Vilella
{"title":"Circumscribed Mass Detection in Digital Mammograms","authors":"M.V.C. Cruz, P. R. Vilella","doi":"10.1109/CERMA.2006.24","DOIUrl":null,"url":null,"abstract":"The incidence of breast cancer in women has increased significantly in recent years. This paper proposes a computer aided diagnostic system for mammographic circumscribed mass detection. The propose method can distinguish between tumours and healthy tissue among various parenchymal tissue patterns. In the first stage the preprocessing and features extraction of the image is done. In this way image segmentation, filtering, contrast improvement and gray level thresholding techniques are applied for enhancing the whole image, and then the features are extracted from the resultant image. In the second part a k-means clustering algorithm is applied. The evaluation of the propose methodology is carried out on Mammography Image Analysis Society (MIAS) dataset","PeriodicalId":179210,"journal":{"name":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2006.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The incidence of breast cancer in women has increased significantly in recent years. This paper proposes a computer aided diagnostic system for mammographic circumscribed mass detection. The propose method can distinguish between tumours and healthy tissue among various parenchymal tissue patterns. In the first stage the preprocessing and features extraction of the image is done. In this way image segmentation, filtering, contrast improvement and gray level thresholding techniques are applied for enhancing the whole image, and then the features are extracted from the resultant image. In the second part a k-means clustering algorithm is applied. The evaluation of the propose methodology is carried out on Mammography Image Analysis Society (MIAS) dataset
数字乳房x光检查中的受限肿块检测
近年来,妇女乳腺癌的发病率显著增加。本文提出了一种乳房x线摄影围限肿块检测的计算机辅助诊断系统。该方法可以在不同的实质组织形态中区分肿瘤和健康组织。首先对图像进行预处理和特征提取。该方法利用图像分割、滤波、对比度改进和灰度阈值等技术对图像整体进行增强,然后从得到的图像中提取特征。第二部分应用k-means聚类算法。在乳房x光图像分析协会(MIAS)数据集上对所提出的方法进行了评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信