Principal Components and the Long Run

Xiaohong Chen, L. Hansen, J. Scheinkman
{"title":"Principal Components and the Long Run","authors":"Xiaohong Chen, L. Hansen, J. Scheinkman","doi":"10.1920/WP.CEM.2009.0709","DOIUrl":null,"url":null,"abstract":"We investigate a method for extracting nonlinear principal components. These principal components maximize variation subject to smoothness and orthogonality constraints; but we allow for a general class of constraints and densities, including densities without compact support and even densities with algebraic tails. We provide primitive sufficient conditions for the existence of these principal components. We also characterize the limiting behavior of the associated eigenvalues, the objects used to quantify the incremental importance of the principal components. By exploiting the theory of continuous-time, reversible Markov processes, we give a different interpretation of the principal components and the smoothness constraints. When the diffusion matrix is used to enforce smoothness, the principal components maximize long-run variation relative to the overall variation subject to orthogonality constraints. Moreover, the principal components behave as scalar autoregressions with heteroskedastic innovations. Finally, we explore implications for a more general class of stationary, multivariate diffusion processes.","PeriodicalId":162026,"journal":{"name":"Levine's Bibliography","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Levine's Bibliography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2009.0709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We investigate a method for extracting nonlinear principal components. These principal components maximize variation subject to smoothness and orthogonality constraints; but we allow for a general class of constraints and densities, including densities without compact support and even densities with algebraic tails. We provide primitive sufficient conditions for the existence of these principal components. We also characterize the limiting behavior of the associated eigenvalues, the objects used to quantify the incremental importance of the principal components. By exploiting the theory of continuous-time, reversible Markov processes, we give a different interpretation of the principal components and the smoothness constraints. When the diffusion matrix is used to enforce smoothness, the principal components maximize long-run variation relative to the overall variation subject to orthogonality constraints. Moreover, the principal components behave as scalar autoregressions with heteroskedastic innovations. Finally, we explore implications for a more general class of stationary, multivariate diffusion processes.
主成分和长期运行
研究了一种非线性主成分的提取方法。这些主成分在平滑性和正交性约束下最大化变化;但是我们允许一般类型的约束和密度,包括没有紧支持的密度,甚至有代数尾的密度。我们提供了这些主成分存在的原始充分条件。我们还描述了相关特征值的极限行为,这些特征值用于量化主成分的增量重要性。利用连续时间可逆马尔可夫过程理论,给出了主成分和平滑约束的不同解释。当使用扩散矩阵来增强平滑性时,主成分相对于受正交性约束的整体变化最大化长期变化。此外,主成分表现为具有异方差创新的标量自回归。最后,我们探讨了一类更一般的平稳、多元扩散过程的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信