Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, Haojin Zhu
{"title":"StormDroid: A Streaminglized Machine Learning-Based System for Detecting Android Malware","authors":"Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, Haojin Zhu","doi":"10.1145/2897845.2897860","DOIUrl":null,"url":null,"abstract":"Mobile devices are especially vulnerable nowadays to malware attacks, thanks to the current trend of increased app downloads. Despite the significant security and privacy concerns it received, effective malware detection (MD) remains a significant challenge. This paper tackles this challenge by introducing a streaminglized machine learning-based MD framework, StormDroid: (i) The core of StormDroid is based on machine learning, enhanced with a novel combination of contributed features that we observed over a fairly large collection of data set; and (ii) we streaminglize the whole MD process to support large-scale analysis, yielding an efficient and scalable MD technique that observes app behaviors statically and dynamically. Evaluated on roughly 8,000 applications, our combination of contributed features improves MD accuracy by almost 10% compared with state-of-the-art antivirus systems; in parallel our streaminglized process, StormDroid, further improves efficiency rate by approximately three times than a single thread.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897845.2897860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 162
Abstract
Mobile devices are especially vulnerable nowadays to malware attacks, thanks to the current trend of increased app downloads. Despite the significant security and privacy concerns it received, effective malware detection (MD) remains a significant challenge. This paper tackles this challenge by introducing a streaminglized machine learning-based MD framework, StormDroid: (i) The core of StormDroid is based on machine learning, enhanced with a novel combination of contributed features that we observed over a fairly large collection of data set; and (ii) we streaminglize the whole MD process to support large-scale analysis, yielding an efficient and scalable MD technique that observes app behaviors statically and dynamically. Evaluated on roughly 8,000 applications, our combination of contributed features improves MD accuracy by almost 10% compared with state-of-the-art antivirus systems; in parallel our streaminglized process, StormDroid, further improves efficiency rate by approximately three times than a single thread.