{"title":"Solderability and reliability evolution of no clean solder fluxes for selective soldering","authors":"Emmanuelle Guéné","doi":"10.4071/ISOM-2017-THA26_146","DOIUrl":null,"url":null,"abstract":"Flux consumption for wave soldering tends to decrease, mainly due to its gradual replacement by reflow soldering methods (i.e. pin-in-paste) in many electronics applications. However, in several cases, wave soldering still remains a must, with an increasing share of “selective” soldering processes, either using wave frames with dedicated apertures or solder fountains. Such processes are more challenging for the fluxes in terms of reliability under operation, since some chemistries remaining on the printed circuit boards after soldering may promote corrosion. Thus, flux manufacturers had to adapt their formulations to minimize such issues while keeping an efficient activation level, with several types of alloys (tin-lead, tin-silver-copper and low/no-silver) and associated with the numerous types of finishes encountered. The paper will cover the types of flux used in the electronic industry according to their chemistry and activation level (rosin-based, halides, alcohol-based or water-based flux…), and their characteristics with reference to standards. The limits of current standards will be discussed in regards to the last generation solder fluxes. Then, the development of two low-residue new generation fluxes, an alcohol-based flux and a true VOC-free flux, will be described, according to requirements: the lab tests results (surface tension, spread tests, wettability tests.) will be presented and discussed. Reliability will be especially investigated through surface insulation resistance, electro-chemical migration test, ionic contamination as well as Bono tests to determine the candidates able to provide high processability combined with chemical inertness of residues. Finally, the performance of flux will be assessed through customer tests, involving several types of boards, finishes and different solder alloys and wave equipment.","PeriodicalId":329807,"journal":{"name":"2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/ISOM-2017-THA26_146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Flux consumption for wave soldering tends to decrease, mainly due to its gradual replacement by reflow soldering methods (i.e. pin-in-paste) in many electronics applications. However, in several cases, wave soldering still remains a must, with an increasing share of “selective” soldering processes, either using wave frames with dedicated apertures or solder fountains. Such processes are more challenging for the fluxes in terms of reliability under operation, since some chemistries remaining on the printed circuit boards after soldering may promote corrosion. Thus, flux manufacturers had to adapt their formulations to minimize such issues while keeping an efficient activation level, with several types of alloys (tin-lead, tin-silver-copper and low/no-silver) and associated with the numerous types of finishes encountered. The paper will cover the types of flux used in the electronic industry according to their chemistry and activation level (rosin-based, halides, alcohol-based or water-based flux…), and their characteristics with reference to standards. The limits of current standards will be discussed in regards to the last generation solder fluxes. Then, the development of two low-residue new generation fluxes, an alcohol-based flux and a true VOC-free flux, will be described, according to requirements: the lab tests results (surface tension, spread tests, wettability tests.) will be presented and discussed. Reliability will be especially investigated through surface insulation resistance, electro-chemical migration test, ionic contamination as well as Bono tests to determine the candidates able to provide high processability combined with chemical inertness of residues. Finally, the performance of flux will be assessed through customer tests, involving several types of boards, finishes and different solder alloys and wave equipment.