Modulating Functions Based Fast and Robust Estimation for a Class of Fractional Order Vibration Systems

Zhi-Bo Wang, Dayan Liu, D. Boutat, Yang Tian, Hao-Ran Liu
{"title":"Modulating Functions Based Fast and Robust Estimation for a Class of Fractional Order Vibration Systems","authors":"Zhi-Bo Wang, Dayan Liu, D. Boutat, Yang Tian, Hao-Ran Liu","doi":"10.1115/detc2021-67447","DOIUrl":null,"url":null,"abstract":"\n This paper aims to fast and robustly estimate the fractional integrals and derivatives of positions from noisy accelerations for a class of fractional order vibration systems defined by the Caputo fractional derivative. The main idea is to convert the original issue into the estimation of the fractional integrals of accelerations and the ones of the unknown initial conditions, on the basis of the additive index law. Being proper integrals, the fractional integrals of accelerations can be estimated via a numerical method. Consequently, solving the original problem boils down to estimating the unknown initial values. To this end, the modulating functions method is adopted. By constructing appropriate modulating functions, the unknown initial values are exactly given in terms of algebraic integral formulas in different situations. Finally, two illustrations are presented to verify the correctness and robustness of the proposed estimators.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-67447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to fast and robustly estimate the fractional integrals and derivatives of positions from noisy accelerations for a class of fractional order vibration systems defined by the Caputo fractional derivative. The main idea is to convert the original issue into the estimation of the fractional integrals of accelerations and the ones of the unknown initial conditions, on the basis of the additive index law. Being proper integrals, the fractional integrals of accelerations can be estimated via a numerical method. Consequently, solving the original problem boils down to estimating the unknown initial values. To this end, the modulating functions method is adopted. By constructing appropriate modulating functions, the unknown initial values are exactly given in terms of algebraic integral formulas in different situations. Finally, two illustrations are presented to verify the correctness and robustness of the proposed estimators.
一类分数阶振动系统的调制函数快速鲁棒估计
针对一类由Caputo分数阶导数定义的分数阶振动系统,研究如何快速鲁棒地估计含噪加速度下的分数阶积分和位置导数。其主要思想是将原来的问题转化为基于加性指数定律的加速度分数积分和未知初始条件的积分的估计。作为固有积分,加速度的分数阶积分可以用数值方法求得。因此,解决原始问题归结为估计未知的初值。为此,采用了调制函数法。通过构造适当的调制函数,在不同情况下用代数积分公式精确地给出了未知初值。最后,通过两个实例验证了所提估计器的正确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信