Applications of GA-based optimization of neural network connection topology

E. Smuda, K. Krishnakumar
{"title":"Applications of GA-based optimization of neural network connection topology","authors":"E. Smuda, K. Krishnakumar","doi":"10.1109/SSST.1993.522797","DOIUrl":null,"url":null,"abstract":"A genetic algorithm (GA) is used to explore the connection space of an artificial neural network (ANN) with the objective of finding a sparsely connected network that yields the same accuracy as a fully connected network. Such sparsity is desired as it improves the generalization capabilities of the mapping. The ANN with the GA-chosen set of connections is then trained using a supervised mode of learning known as backpropagation error. Using this technique, three different applications are analyzed.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"13 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A genetic algorithm (GA) is used to explore the connection space of an artificial neural network (ANN) with the objective of finding a sparsely connected network that yields the same accuracy as a fully connected network. Such sparsity is desired as it improves the generalization capabilities of the mapping. The ANN with the GA-chosen set of connections is then trained using a supervised mode of learning known as backpropagation error. Using this technique, three different applications are analyzed.
基于遗传算法的神经网络连接拓扑优化应用
遗传算法(GA)用于探索人工神经网络(ANN)的连接空间,目的是寻找具有与完全连接网络相同精度的稀疏连接网络。这种稀疏性是需要的,因为它提高了映射的泛化能力。然后使用一种被称为反向传播误差的监督学习模式来训练具有ga选择的连接集的人工神经网络。使用这种技术,分析了三种不同的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信