Estimating tail probabilities of random sums of infinite mixtures of phase-type distributions

H. Yao, L. Rojas-Nandayapa, T. Taimre
{"title":"Estimating tail probabilities of random sums of infinite mixtures of phase-type distributions","authors":"H. Yao, L. Rojas-Nandayapa, T. Taimre","doi":"10.1109/WSC.2016.7822102","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating tail probabilities of random sums of infinite mixtures of phase-type (IMPH) distributions—a class of distributions corresponding to random variables which can be represented as a product of an arbitrary random variable with a classical phase-type distribution. Our motivation arises from applications in risk and queueing problems. Classical rare-event simulation algorithms cannot be implemented in this setting because these typically rely on the availability of the CDF or the MGF, but these are difficult to compute or not even available for the class of IMPH distributions. In this paper, we address these issues and propose alternative simulation methods for estimating tail probabilities of random sums of IMPH distributions; our algorithms combine importance sampling and conditional Monte Carlo methods. The empirical performance of each method suggested is explored via numerical experimentation.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the problem of estimating tail probabilities of random sums of infinite mixtures of phase-type (IMPH) distributions—a class of distributions corresponding to random variables which can be represented as a product of an arbitrary random variable with a classical phase-type distribution. Our motivation arises from applications in risk and queueing problems. Classical rare-event simulation algorithms cannot be implemented in this setting because these typically rely on the availability of the CDF or the MGF, but these are difficult to compute or not even available for the class of IMPH distributions. In this paper, we address these issues and propose alternative simulation methods for estimating tail probabilities of random sums of IMPH distributions; our algorithms combine importance sampling and conditional Monte Carlo methods. The empirical performance of each method suggested is explored via numerical experimentation.
估计无限相型分布混合随机和的尾概率
考虑无限相型混合分布(IMPH)随机和的尾概率估计问题。IMPH是一类对应于随机变量的分布,可以表示为任意随机变量与经典相型分布的乘积。我们的动机来自风险和排队问题中的应用程序。经典的罕见事件模拟算法不能在这种设置中实现,因为它们通常依赖于CDF或MGF的可用性,但是这些很难计算,甚至不能用于IMPH分布类。在本文中,我们解决了这些问题,并提出了用于估计IMPH分布随机和尾部概率的替代模拟方法;我们的算法结合了重要性抽样和条件蒙特卡罗方法。通过数值实验探讨了每种方法的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信