Statistical Language Models for Graphical Object Recognition

The ITB Journal Pub Date : 1900-01-01 DOI:10.21427/D7D456
L. Keyes, A. O'Sullivan, A. Winstanley
{"title":"Statistical Language Models for Graphical Object Recognition","authors":"L. Keyes, A. O'Sullivan, A. Winstanley","doi":"10.21427/D7D456","DOIUrl":null,"url":null,"abstract":"This paper explores automatic recognition and semantic capture in vector graphics for \ngraphical information systems. The low-level graphical content of graphical documents, such \nas a map or architectural drawing, are often captured manually and the encoding of the \nsemantic content seen as an extension of this. The large quantity of new and archived \ngraphical data available on paper makes automatic structuring of such graphical data \ndesirable. A successful method for recognising text data uses statistical language models. \nThis work will investigate and evaluate similar and adapted statistical models (Statistical \nGraphical Langauge Models, SGLM) to graphical languages based on the associations \nbetween different classes of object in a drawing to automate the structuring and recognition \nof graphical data.","PeriodicalId":344899,"journal":{"name":"The ITB Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ITB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21427/D7D456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores automatic recognition and semantic capture in vector graphics for graphical information systems. The low-level graphical content of graphical documents, such as a map or architectural drawing, are often captured manually and the encoding of the semantic content seen as an extension of this. The large quantity of new and archived graphical data available on paper makes automatic structuring of such graphical data desirable. A successful method for recognising text data uses statistical language models. This work will investigate and evaluate similar and adapted statistical models (Statistical Graphical Langauge Models, SGLM) to graphical languages based on the associations between different classes of object in a drawing to automate the structuring and recognition of graphical data.
用于图形对象识别的统计语言模型
本文探讨了面向图形信息系统的矢量图形的自动识别和语义捕获。图形化文档(如地图或架构图)的低级图形化内容通常是手动捕获的,语义内容的编码被视为该文档的扩展。纸张上有大量新的和存档的图形数据,因此需要对这些图形数据进行自动结构化。一个成功的识别文本数据的方法是使用统计语言模型。这项工作将调查和评估类似的和适应的统计模型(统计图形语言模型,SGLM),基于绘图中不同类别对象之间的关联,以自动化图形数据的结构和识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信