Mathematic Physical Equivalency of 2D Pure Waves in Seismics and Electromagnetics

T. Qin, T. Bohlen
{"title":"Mathematic Physical Equivalency of 2D Pure Waves in Seismics and Electromagnetics","authors":"T. Qin, T. Bohlen","doi":"10.3997/2214-4609.201902580","DOIUrl":null,"url":null,"abstract":"Summary For a long time people tried to find the inner connection between the seismic waves and electromagnetic (EM) waves to explain their similarity. For example, the acoustic wave and Shear Horizontal (SH) wave possess the similar mathematic expression with the Transversal Electric (TE) and Transversal Magnetic (TM) wave, respectly. In this paper, we summarize those waves into an uniform wave equation based on a concept we termed the “wave operator”. The spartial matrix derived from the wave operator consists of four parts in three directions: the direction component, the volume component, the shear component and the rotation component. We then proved the equivalency of different pure waves in 2D case using this uniform expression. Therefore the forward solver developed for the longitudinal, shear and rotation wave can be converted to each other with a simple substitution. The two numerical tests verified our proposition.","PeriodicalId":162237,"journal":{"name":"10th International Workshop on Advanced Ground Penetrating Radar","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Workshop on Advanced Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary For a long time people tried to find the inner connection between the seismic waves and electromagnetic (EM) waves to explain their similarity. For example, the acoustic wave and Shear Horizontal (SH) wave possess the similar mathematic expression with the Transversal Electric (TE) and Transversal Magnetic (TM) wave, respectly. In this paper, we summarize those waves into an uniform wave equation based on a concept we termed the “wave operator”. The spartial matrix derived from the wave operator consists of four parts in three directions: the direction component, the volume component, the shear component and the rotation component. We then proved the equivalency of different pure waves in 2D case using this uniform expression. Therefore the forward solver developed for the longitudinal, shear and rotation wave can be converted to each other with a simple substitution. The two numerical tests verified our proposition.
二维纯波在地震和电磁学中的数学物理等效性
长期以来,人们试图寻找地震波和电磁波之间的内在联系,以解释它们的相似性。例如,声波和横切水平(SH)波分别与横切电(TE)波和横切磁(TM)波具有相似的数学表达式。在本文中,我们基于一个我们称之为“波动算子”的概念,将这些波动归纳为一个统一的波动方程。由波算符导出的偏矩阵由三个方向上的四部分组成:方向分量、体积分量、剪切分量和旋转分量。然后用此统一表达式证明了二维情况下不同纯波的等价性。因此,所开发的纵波、横波和旋转波正演求解器只需简单的替换即可相互转换。两次数值试验验证了我们的命题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信