{"title":"Network-on-Chip with Long-Range Wireless Links for High-Throughput Scientific Computation","authors":"Turbo Majumder, P. Pande, A. Kalyanaraman","doi":"10.1109/IPDPSW.2013.72","DOIUrl":null,"url":null,"abstract":"Several emerging application domains in scientific computing demand high computation throughputs to achieve terascale or higher performance. Dedicated centers hosting scientific computing tools on a few high-end servers could rely on hardware accelerator co-processors that contain multiple lightweight custom cores interconnected through an on-chip network. While network-on-chip (NoC) driven platforms have been studied in the context of accelerating individual applications, this work studies the efficacy of NoC-based platforms to enhance overall computation throughput in the presence of several concurrently executing jobs. Use of long-range links has been shown to reduce network diameter and we use this property in conjunction with different resource allocation strategies to deliver high throughput. Our experiments using a computational biology application suite as a demonstration study show that the use of long-range wireless shortcuts coupled with the appropriate resource allocation strategy delivers computation throughput over 1011 operations per second, consuming ~0.5 nJ per operation.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Several emerging application domains in scientific computing demand high computation throughputs to achieve terascale or higher performance. Dedicated centers hosting scientific computing tools on a few high-end servers could rely on hardware accelerator co-processors that contain multiple lightweight custom cores interconnected through an on-chip network. While network-on-chip (NoC) driven platforms have been studied in the context of accelerating individual applications, this work studies the efficacy of NoC-based platforms to enhance overall computation throughput in the presence of several concurrently executing jobs. Use of long-range links has been shown to reduce network diameter and we use this property in conjunction with different resource allocation strategies to deliver high throughput. Our experiments using a computational biology application suite as a demonstration study show that the use of long-range wireless shortcuts coupled with the appropriate resource allocation strategy delivers computation throughput over 1011 operations per second, consuming ~0.5 nJ per operation.