Adaptiope: A Modern Benchmark for Unsupervised Domain Adaptation

Tobias Ringwald, R. Stiefelhagen
{"title":"Adaptiope: A Modern Benchmark for Unsupervised Domain Adaptation","authors":"Tobias Ringwald, R. Stiefelhagen","doi":"10.1109/WACV48630.2021.00015","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation (UDA) deals with the adaptation process of a given source domain with labeled training data to a target domain for which only unannotated data is available. This is a challenging task as the domain shift leads to degraded performance on the target domain data if not addressed. In this paper, we analyze commonly used UDA classification datasets and discover systematic problems with regard to dataset setup, ground truth ambiguity and annotation quality. We manually clean the most popular UDA dataset in the research area (Office-31) and quantify the negative effects of inaccurate annotations through thorough experiments. Based on these insights, we collect the Adaptiope dataset - a large scale, diverse UDA dataset with synthetic, product and real world data - and show that its transfer tasks provide a challenge even when considering recent UDA algorithms. Our datasets are available at https://gitlab.com/tringwald/adaptiope.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Unsupervised domain adaptation (UDA) deals with the adaptation process of a given source domain with labeled training data to a target domain for which only unannotated data is available. This is a challenging task as the domain shift leads to degraded performance on the target domain data if not addressed. In this paper, we analyze commonly used UDA classification datasets and discover systematic problems with regard to dataset setup, ground truth ambiguity and annotation quality. We manually clean the most popular UDA dataset in the research area (Office-31) and quantify the negative effects of inaccurate annotations through thorough experiments. Based on these insights, we collect the Adaptiope dataset - a large scale, diverse UDA dataset with synthetic, product and real world data - and show that its transfer tasks provide a challenge even when considering recent UDA algorithms. Our datasets are available at https://gitlab.com/tringwald/adaptiope.
Adaptiope:无监督域自适应的现代基准
无监督域自适应(Unsupervised domain adaptation, UDA)处理的是一个给定的具有标记训练数据的源域到只有未注释数据可用的目标域的自适应过程。这是一项具有挑战性的任务,因为如果不加以解决,域转移将导致目标域数据的性能下降。在本文中,我们分析了常用的UDA分类数据集,并发现了数据集设置、基础真值模糊和注释质量方面的系统性问题。我们手动清理了研究领域中最流行的UDA数据集(Office-31),并通过彻底的实验量化了不准确注释的负面影响。基于这些见解,我们收集了Adaptiope数据集——一个大规模、多样化的UDA数据集,包含合成、产品和现实世界的数据——并表明,即使考虑到最近的UDA算法,它的传输任务也会带来挑战。我们的数据集可在https://gitlab.com/tringwald/adaptiope上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信