Construction of Optimal Edit Metric Codes

S. Houghten, D. Ashlock, J. Lenarz
{"title":"Construction of Optimal Edit Metric Codes","authors":"S. Houghten, D. Ashlock, J. Lenarz","doi":"10.1109/ITW2.2006.323799","DOIUrl":null,"url":null,"abstract":"The edit distance between two strings is the minimal number of substitutions, deletions, or insertions required to transform one string into another. An error correcting code over the edit metric includes features from deletion-correcting codes as well as the more traditional codes defined using Hamming distance. Applications of edit metric codes include the creation of robust tags over the DNA alphabet. This paper explores the theory underlying edit metric codes for small alphabets. The size of a sphere about a word is heavily dependent on its block structure, or its partition into maximal subwords of a single symbol. This creates a substantial divergence from the theory for the Hamming metric. An optimal code is one with the maximum possible number of codewords for its length and minimum distance. We provide tables of bounds on code sizes for edit codes with short length and small alphabets. We describe issues relating to exhaustive searches and present several heuristics for constructing codes","PeriodicalId":299513,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","volume":"45 15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW2.2006.323799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The edit distance between two strings is the minimal number of substitutions, deletions, or insertions required to transform one string into another. An error correcting code over the edit metric includes features from deletion-correcting codes as well as the more traditional codes defined using Hamming distance. Applications of edit metric codes include the creation of robust tags over the DNA alphabet. This paper explores the theory underlying edit metric codes for small alphabets. The size of a sphere about a word is heavily dependent on its block structure, or its partition into maximal subwords of a single symbol. This creates a substantial divergence from the theory for the Hamming metric. An optimal code is one with the maximum possible number of codewords for its length and minimum distance. We provide tables of bounds on code sizes for edit codes with short length and small alphabets. We describe issues relating to exhaustive searches and present several heuristics for constructing codes
最优编辑度量码的构造
两个字符串之间的编辑距离是将一个字符串转换为另一个字符串所需的替换、删除或插入的最小数量。编辑度量上的纠错码包括来自删除纠错码的特征,以及使用汉明距离定义的更传统的代码。编辑度量码的应用包括在DNA字母表上创建健壮的标签。本文探讨了小字母编辑度量码的基本原理。一个词的球的大小很大程度上取决于它的块结构,或者它被分割成单个符号的最大子词。这与汉明度规的理论产生了实质性的分歧。最优码是指与其长度和最小距离相匹配的码字数量最大的码码。我们为短长度和小字母的编辑代码提供了代码大小限制表。我们描述了与穷举搜索有关的问题,并提出了几个构建代码的启发式方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信