Improving Malware Detection Accuracy by Extracting Icon Information

Pedro Silva, Sepehr Akhavan-Masouleh, Li Li
{"title":"Improving Malware Detection Accuracy by Extracting Icon Information","authors":"Pedro Silva, Sepehr Akhavan-Masouleh, Li Li","doi":"10.1109/MIPR.2018.00088","DOIUrl":null,"url":null,"abstract":"Detecting PE malware files is now commonly approached using statistical and machine learning models. While these models commonly use features extracted from the structure of PE files, we propose that icons from these files can also help better predict malware. We propose a new machine learning approach to extract information from icons. Our proposed approach consists of two steps: 1) extracting icon features using summary statics, a histogram of gradients (HOG), and a convolutional autoencoder, 2) clustering icons based on the extracted icon features. Using publicly available data and by using machine learning experiments, we show our proposed icon clusters significantly boost the efficacy of malware prediction models. In particular, our experiments show an average accuracy increase of 10 percent when icon clusters are used in the prediction model.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Detecting PE malware files is now commonly approached using statistical and machine learning models. While these models commonly use features extracted from the structure of PE files, we propose that icons from these files can also help better predict malware. We propose a new machine learning approach to extract information from icons. Our proposed approach consists of two steps: 1) extracting icon features using summary statics, a histogram of gradients (HOG), and a convolutional autoencoder, 2) clustering icons based on the extracted icon features. Using publicly available data and by using machine learning experiments, we show our proposed icon clusters significantly boost the efficacy of malware prediction models. In particular, our experiments show an average accuracy increase of 10 percent when icon clusters are used in the prediction model.
通过提取图标信息提高恶意软件检测的准确性
检测PE恶意软件文件现在通常使用统计和机器学习模型。虽然这些模型通常使用从PE文件结构中提取的特征,但我们建议这些文件中的图标也可以帮助更好地预测恶意软件。我们提出了一种新的机器学习方法来从图标中提取信息。我们提出的方法包括两个步骤:1)使用汇总静态、梯度直方图(HOG)和卷积自编码器提取图标特征;2)基于提取的图标特征聚类图标。通过使用公开可用的数据和机器学习实验,我们表明我们提出的图标聚类显著提高了恶意软件预测模型的有效性。特别是,我们的实验表明,当在预测模型中使用图标聚类时,平均准确率提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信