A Scalable Parallel HITS Algorithm for Page Ranking

Matthew Bennett, Julie Stone, Chaoyang Zhang
{"title":"A Scalable Parallel HITS Algorithm for Page Ranking","authors":"Matthew Bennett, Julie Stone, Chaoyang Zhang","doi":"10.1109/IMSCCS.2006.22","DOIUrl":null,"url":null,"abstract":"The hypertext induced topic search (HITS) algorithm is a method of ranking authority of information sources in a hyperlinked environment HITS uses only topological properties of the hyperlinked network to determine rankings. We present an efficient and scalable implementation of the HITS algorithm that uses MPI as an underlying means of communication. We then analyze the performance on a shared memory supercomputer, and use our results to verify the optimal number of processors needed to rank a large number of pages for the link structure of the total University of Southern Mississippi (usm.edu domain) Web sites","PeriodicalId":202629,"journal":{"name":"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2006.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The hypertext induced topic search (HITS) algorithm is a method of ranking authority of information sources in a hyperlinked environment HITS uses only topological properties of the hyperlinked network to determine rankings. We present an efficient and scalable implementation of the HITS algorithm that uses MPI as an underlying means of communication. We then analyze the performance on a shared memory supercomputer, and use our results to verify the optimal number of processors needed to rank a large number of pages for the link structure of the total University of Southern Mississippi (usm.edu domain) Web sites
一种可扩展的并行HITS页面排序算法
超文本诱导主题搜索(HITS)算法是一种在超链接环境中对信息源进行权威排序的方法,它仅利用超链接网络的拓扑属性来确定排名。我们提出了一种高效且可扩展的HITS算法实现,该算法使用MPI作为底层通信手段。然后,我们分析了共享内存超级计算机上的性能,并使用我们的结果验证了为整个南密西西比大学(usm.edu域名)网站的链接结构对大量页面进行排名所需的最佳处理器数量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信