HFGCN: High-speed and Fully-optimized GCN Accelerator

Mi-Sung Han, Jiwan Kim, Donggeon Kim, Hyunuk Jeong, Gilho Jung, Myeongwon Oh, Hyundong Lee, Yunjeong Go, Hyunwoo Kim, Jongbeom Kim, Taigon Song
{"title":"HFGCN: High-speed and Fully-optimized GCN Accelerator","authors":"Mi-Sung Han, Jiwan Kim, Donggeon Kim, Hyunuk Jeong, Gilho Jung, Myeongwon Oh, Hyundong Lee, Yunjeong Go, Hyunwoo Kim, Jongbeom Kim, Taigon Song","doi":"10.1109/ISQED57927.2023.10129340","DOIUrl":null,"url":null,"abstract":"graph convolutional network (GCN) is a type of neural network that inference new nodes based on the connectivity of the graphs. GCN requires high-calculation volume for processing, similar to other neural networks requiring significant calculation. In this paper, we propose a new hardware architecture for GCN that tackles the problem of wasted cycles during processing. We propose a new scheduler module that reduces memory access through aggregation and an optimized systolic array with improved delay. We compare our study with the state-of-the-art GCN accelerator and show outperforming results.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

graph convolutional network (GCN) is a type of neural network that inference new nodes based on the connectivity of the graphs. GCN requires high-calculation volume for processing, similar to other neural networks requiring significant calculation. In this paper, we propose a new hardware architecture for GCN that tackles the problem of wasted cycles during processing. We propose a new scheduler module that reduces memory access through aggregation and an optimized systolic array with improved delay. We compare our study with the state-of-the-art GCN accelerator and show outperforming results.
HFGCN:高速、全优化的GCN加速器
图卷积网络(GCN)是一种基于图的连通性来推断新节点的神经网络。GCN需要高计算量进行处理,类似于其他需要大量计算的神经网络。在本文中,我们提出了一种新的GCN硬件架构,以解决处理过程中浪费周期的问题。我们提出了一个新的调度器模块,通过聚合减少内存访问,并优化了具有改进延迟的收缩数组。我们将我们的研究与最先进的GCN加速器进行比较,并显示出出色的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信