Uncovering Surprising Event Boundaries in Narratives

Zhiling Wang, A. Jafarpour, Maarten Sap
{"title":"Uncovering Surprising Event Boundaries in Narratives","authors":"Zhiling Wang, A. Jafarpour, Maarten Sap","doi":"10.18653/v1/2022.wnu-1.1","DOIUrl":null,"url":null,"abstract":"It is important to define meaningful and interpretable automatic evaluation metrics for open-domain dialog research. Standard language generation metrics have been shown to be ineffective for dialog. This paper introduces the FED metric (fine-grained evaluation of dialog), an automatic evaluation metric which uses DialoGPT, without any fine-tuning or supervision. It also introduces the FED dataset which is constructed by annotating a set of human-system and human-human conversations with eighteen fine-grained dialog qualities. The FED metric (1) does not rely on a ground-truth response, (2) does not require training data and (3) measures fine-grained dialog qualities at both the turn and whole dialog levels. FED attains moderate to strong correlation with human judgement at both levels.","PeriodicalId":398853,"journal":{"name":"Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wnu-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

It is important to define meaningful and interpretable automatic evaluation metrics for open-domain dialog research. Standard language generation metrics have been shown to be ineffective for dialog. This paper introduces the FED metric (fine-grained evaluation of dialog), an automatic evaluation metric which uses DialoGPT, without any fine-tuning or supervision. It also introduces the FED dataset which is constructed by annotating a set of human-system and human-human conversations with eighteen fine-grained dialog qualities. The FED metric (1) does not rely on a ground-truth response, (2) does not require training data and (3) measures fine-grained dialog qualities at both the turn and whole dialog levels. FED attains moderate to strong correlation with human judgement at both levels.
揭示叙事中令人惊讶的事件边界
在开放域对话研究中,定义有意义且可解释的自动评价指标是非常重要的。标准语言生成度量已被证明对对话是无效的。本文介绍了FED度量(细粒度的对话评估),这是一种使用DialoGPT的自动评估度量,不需要任何微调和监督。它还介绍了FED数据集,该数据集通过注释一组具有18个细粒度对话质量的人-系统和人-人对话来构建。FED度量(1)不依赖于真实的响应,(2)不需要训练数据,(3)在回合和整个对话级别测量细粒度的对话质量。FED与人的判断在这两个层面上都达到了中度到高度的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信